Eighth International Conference on p-Adic Mathematical Physics and its Applications p-adics, 2021 WEB CONFERENCE
 May 24, 2021

Linear representations of p-adic Heisenberg groups
in spaces of analytic and continuous functions.

Bertin Diarra ${ }^{1}$ and Tongobé Mounkoro ${ }^{2}$

Abstract

Let K be a complete valued field extension of the field of p-adic numbers \mathbb{Q}_{p}. Let \mathcal{D} be a closed unitary subring of the valuation ring Λ_{K} of K. Let $\mathcal{H}(3, \mathcal{D})$ be the 3-dimensional Heisenberg group with entries in \mathcal{D}. We shall give continuous linear representations of $\mathcal{H}(3, \mathcal{D})$ in the space $K<z>$ of restricted power series with cœefficients in K ($=$ the Tate algebra in one variable, i.e. the space of analytic functions on Λ_{K}), analogous to Schrödinger representations of the classical Heisenberg group. On the other hand, assuming that \mathcal{D} is compact, we shall obtain by the same way continuous linear representations of the profinite group $\mathcal{H}(3, \mathcal{D})$ in the space of continuous functions $\mathcal{C}(\mathcal{D}, K)$, other analogues of Schrödinger representations. These representations are topologically irreducible. From the first representations, one obtains position and momentum bounded operators satisfying Heisenberg commutation relation and the Weyl algebra $A_{1}(K)$ as subalgebra of the algebra of bounded linear operators of $K<z>$. The closure $\widetilde{A}_{1}(K)$ of $A_{1}(K)$ is described.

1 Laboratoire de Mathématiques, UMR 6620 CNRS Campus Universitaire des Cézeaux, 3 place Vasarely, 63178 Aubière Cedex, France
e-mail : Bertin Diarra bertin.diarra@math.univ-bpclermont.fr
2 USTTB
Faculté des Sciences et Techniques (FST),
DER de Mathématiques et Informatique,
BP : E 3206 Bamako, Mali
e-mail : Tongobé Mounkoro tongobemounkoro@yahoo.fr

1. Introduction

Let A be a commutative unitary ring. By definition the Heisenberg group on A of order (dimension) 3 is the 3×3 unipotent upper triangular matrix group with entries in A, that is :
$\mathcal{H}(3, A)=\left\{s(a, b, c)=\left(\begin{array}{lll}1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1\end{array}\right): a, b, c \in A\right\}$.
One has $s(0,0,0)=I_{3}$. For $s(a, b, c)$ and $s\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$ in $\mathcal{H}(3, A)$, one sees that $s(a, b, c) s\left(a^{\prime}, b^{\prime}, c^{\prime}\right)=$ $s\left(a+a^{\prime}, b+b^{\prime}, c+c^{\prime}+a b^{\prime}\right)$ and $s(a, b, c)^{-1}=s(-a,-b,-c+a b)$.
The subset $\{s(a, 0, c) / a, c \in A\}[\operatorname{resp} .\{s(0, b, c) / b, c \in A\}]$ is readily seen to be a subgroup of $\mathcal{H}(3, A)$ isomorphic to the additive group $A \times A$ [resp. isomorphic to the additive $A \times A$ and is a normal subgroup] Also $\{s(a, 0,0) / a, \in A\}$ is a subgroup isomorphic to the additive group A and $\mathcal{H}(3, A)=\{s(a, 0,0) / a, c \in A\} \ltimes\{s(0, b, c) / b, c \in A\}$, with respect to the action $s(a, 0,0) \cdot s(0, b, c)=$ $s(0, b, c+a b)$.

Proposition 1.1.
(i) One has $s(a, b, c)=s(0,0, c) s(0, b, 0) s(a, 0,0)$.
(ii) The center of the group $\mathcal{H}(3, A)$ is equal to $\{s(0,0, c) / c \in A\}$
(iii) $s(a, 0,0) s(0,0, c)=s(a, 0, c)=s(0,0, c) s(a, 0,0)$ and $s(0, b, 0) s(0,0, c)=s(0, b, c)=s(0,0, c) s(0, b, 0)$
(iv) $s(a, b, c) s\left(a^{\prime}, b^{\prime}, c^{\prime}\right) s(a, b, c)^{-1} s\left(a^{\prime}, b^{\prime}, c^{\prime}\right)^{-1}=s\left(0,0, a^{\prime} b-a b^{\prime}\right)$

Proof We only prove (ii). Assume that $s(a, b, c)$ belongs to $Z(\mathcal{H}(3, A))$ the center of $\mathcal{H}(3, A)$. Then for any $a^{\prime}, b^{\prime}, c^{\prime} \in A$ one has $s\left(a+a^{\prime}, b+b^{\prime}, c+c^{\prime}+a b^{\prime}\right)=s\left(a+a^{\prime}, b+b^{\prime}, c+c^{\prime}+a^{\prime} b\right) \Longrightarrow a b^{\prime}=$ $a^{\prime} b, \forall a^{\prime}, b^{\prime} \in A$. If $a^{\prime}=0$ and $b^{\prime}=1$, one has $a=0$ and $a^{\prime} b=0, \forall a^{\prime} \in A$ which implies $1 . b=0$. It follows that the center $Z(\mathcal{H}(3, A))$ is contained in $\{s(0,0, c) / c \in A\}$. But this latest set is seen to be included in the center. Whence the equality.

Let us notice that as a center, $Z(\mathcal{H}(3, A))$ is a normal subgroup. One immediately sees that the quotient group $\mathcal{H}(3, A) / Z(\mathcal{H}(3, A))$ is isomorphic to the product $A \times A$ of additve group. One also deduces from $(i v)$ that $Z(\mathcal{H}(3, A))=\{s(0,0, c) / c \in A\}$ is the group of commutators of $\mathcal{H}(3, A)$.

For finite commutative unitary ring as the quotient $\mathbb{Z} / m \mathbb{Z}$ and for finite fields the complex linear representations of these groups have been studied by many authors (see for instance $[\mathbf{6}],[\mathbf{7}]$, [12])

In this talk, we consider a complete ultrametric valued field K, extension of the field of p-adic numbers \mathbb{Q}_{p} and if \mathcal{D} is a closed unitary subring of the valuation ring Λ_{K} of K, we are interested to the continuous linear representations of $\mathcal{H}(3, \mathcal{D})$ in appropriate function spaces.
The Schrödinger linear representations of the real Heisenberg group $\mathcal{H}(3, \mathbb{R})$ are obtained from their restriction on the center of $\mathcal{H}(3, \mathbb{R})$ equal the additive group of \mathbb{R}, restrictions which are the non
trivial characters of \mathbb{R} (see for instance [4]). Our aim is to develop such theory for the group $\mathcal{H}(3, \mathcal{D})$ and then to find appropriate characters on the additive group of \mathcal{D}.
Let us notice that $\mathcal{H}(3, \mathcal{D})$ is a closed subgroup of the topological group of the general linear group $G L(3, \mathcal{D})$ on which one considers the topology induced by the norm $\|s\|=\max _{1 \leq i, j \leq 3}\left|a_{i, j}\right|$ on the algebra of matrices $\operatorname{Mat}_{3}(\mathcal{D})$.

Since \mathbb{Z}_{p} is contained in any closed unitary subring \mathcal{D} of Λ_{K}, one obtains a way to find characters of \mathcal{D} that extend some of \mathbb{Z}_{p}. Let us remind the following lemma.

Lemma 1.2. Assume that K is a complete valued field extension of \mathbb{Q}_{p}.
The group $\widehat{\mathbb{Z}_{p}}$ of the continuous characters of the additive group Z_{p} in K^{\star} corresponds bijectively to the principal unit group $D^{-}(1,1)$ of Λ_{K}.

Proof
For that, let us notice that if κ is a continuous character of \mathbb{Z}_{p} in K^{\star}, then $|\kappa(1)|=1$ and $\lim _{n \rightarrow+\infty} \kappa(1)^{p^{n}}=\lim _{n \rightarrow+\infty} \kappa\left(p^{n}\right)=\kappa(0)=1$. Which implies $|\kappa(1)-1|<1$,

Then there exists a positive integer m such that $\left|\kappa(1)^{p^{m}}-1\right|<1$. Which implies $|\kappa(1)-1|<1$, $|\kappa(1)-1|<1$, that is $\kappa(1)$ belongs to $D^{-}(1,1)$. and one obtains $\kappa(a)=\sum_{n \geq 0}\binom{a}{n}(\kappa(1)-1)^{n}, \forall a \in$ \mathbb{Z}_{p}.

Conversely let $q \in D^{-}(1,1)$, one immediately sees that for any $a \in \mathbb{Z}_{p}$, the series $q^{a}=$ $\sum_{n \geq 0}\binom{a}{n}(q-1)^{n}$ converges uniformly with respect to a, hence defines a continuous function of \mathbb{Z}_{p} in K and defines a continuous character.

Corollary 1.3.

Let K be a complete valued field extension of \mathbb{Q}_{p}.
Any continuous character κ of \mathbb{Z}_{p} in K is a strictly differentiable function with derivative $\kappa^{\prime}(a)=\log (\kappa(1)) \kappa(a)$.

Proof
This follows from the fact that $\lim _{n \rightarrow+\infty} n|\kappa(1)-1|^{n}=0$. Condition which as well known (cf [9] or [11]) implies that the function κ with Mahler expansion $\kappa(a)=\sum_{n \geq 0}\binom{a}{n}(\kappa(1)-1)^{n}$ is strictly differentiable. A simple computation on the Mahler expansion gives the derivative.

Application The case when $|\kappa(1)-1|<\left\lvert\, p^{\frac{1}{p-1}}\right.$

That is $\kappa(1)=1+\vartheta \in 1+E_{p}$, where $E_{p}=\left\{\beta \in K:|\beta|<|p|^{\frac{1}{p-1}}\right\}$ is the disc of convergence in K of the exponential. One has $\log (1+\vartheta)=\varpi \in E_{p}$, and $1+\vartheta=\exp (\varpi)$. Then for any positive integer $m, \kappa(m)=(1+\vartheta)^{m}=\exp (m \varpi)$. One obtains $\kappa(a)=\exp (\varpi a), \forall a \in \mathbb{Z}_{p}$. If $\varpi=0$, one has the trivial character $\kappa_{0}(a)=1$
Since $|\varpi|=|\log (1+\theta)|=|\theta|<|p|^{\frac{1}{p-1}}$, one has $\lim _{n \rightarrow+\infty} \frac{\left|\varpi^{n}\right|}{|n!|}=0$.

One concludes that the character κ such that $\kappa(a)=\exp (\varpi a)=\exp _{\varpi}(a)=\sum_{n \geq 0} \frac{\varpi^{n}}{n!} a^{n}$ is an analytic function, where $\varpi=\log (\kappa(1))$. Moreover one has $\kappa^{\prime}(a)=\varpi \kappa(a)$.
In fact $\exp _{\varpi}$ is a restricted power series with cofficients in K.
For any closed subring \mathcal{D} of Λ_{K}, if t is an element of \mathcal{D}, then $|\varpi t| \leq|\varpi|<|p|^{\frac{1}{p-1}}$. It follows that κ extends to \mathcal{D} by setting for $t \in \mathcal{D}: \kappa_{\varpi}(t)=\exp (\varpi t)=\exp _{\varpi}(t)$ which defines a character of the additive group \mathcal{D} into K^{\star}. In particular $\exp _{\varpi}$ defines an analytic character of the additive group of Λ_{K}.

2. The case of a compact subring \mathcal{D} of Λ_{K}

Let K be a complete field extension of \mathbb{Q}_{p} and Λ_{K} its ring of valuation. We consider here a compact unitary subring \mathcal{D} of Λ_{K}, for instance the ring \mathbb{Z}_{p} of p-adic integers or the valuation ring of any finite extension of \mathbb{Q}_{p} contained in K and vice versa.
The compact ring \mathcal{D} being totally discontinuous one sees that the Heisenberg group $\mathcal{H}(3, \mathcal{D})$ is a topological, totally discontinuous, compact group, that is a profinite group. For instance $\mathcal{H}\left(3, \mathbb{Z}_{p}\right)$ is a pro-p-group.

Let us fix $0 \neq \varpi \in E_{p}$, the open disc of convergence of the p-adic exponential function. We have seen that the map $\exp _{\varpi}: t \longrightarrow \exp _{\varpi}(t)=\sum_{n \geq 0} \frac{\varpi^{n}}{n!} t^{n}$ of Λ_{K} in K^{\star} is a continuous character (even analytic) of the additive group Λ_{K} and by restriction a character of the additive group of any of its closed unitary subring.
Consider for the compact ring \mathcal{D} the K-vector space $\mathcal{C}(\mathcal{D}, K)$ of continuous functions f of \mathcal{D} in K. With the supremum norm $\|f\|$ and the usual product of functions $\mathcal{C}(\mathcal{D}, K)$ is a unitary Banach algebra.

Let $s=s(a, b, c)$ be an element of $\mathcal{H}(3, \mathcal{D})$ and f an element of $\mathcal{C}(\mathcal{D}, K)$.

$$
\text { Set } \pi_{s}^{\varpi} f(t)=\exp _{\varpi}(b t+c) f(t+a)
$$

It is clear that $\pi_{s}^{\varpi} f$ is a continuos function of \mathcal{D} in K.
N.B.

If $\varpi=0$, one has $\pi_{s(a, b, c)}^{0} f(t)=f(t+a)$. Then $\pi_{s(0, b, c)}^{0} f(t)=f(t) \forall b, c \in \mathcal{D}$.

Lemma 2.1.
The map $(s, f) \longrightarrow \pi_{s}^{\varpi} f$ such that $\pi_{s}^{\varpi} f(t)=\exp _{\varpi}(b t+c) f(t+a)$ defines a continuous linear representation of $\mathcal{H}(3, \mathcal{D})$ in the Banach space $\mathcal{C}(\mathcal{D}, K)$.

Proof
(1) Indeed, it is readily seen that for any $s \in \mathcal{H}(3, \mathcal{D})$, one has that π_{s}^{ϖ} is a continuous linear endomorphism of $\mathcal{C}(\mathcal{D}, K)$ and each π_{s}^{ϖ} is an isometry.

EIGHTH INTERNATIONAL CONFERENCE ON P-ADICMATHEMATICAL PHYSICS AND ITS APPLICATIONSP-ADICS, 20
For $s(a, b, c), s\left(a^{\prime}, b^{\prime}, c^{\prime}\right) \in \mathcal{H}(3, \mathcal{D}$ and f a continuous functions of \mathcal{D} in K, It is a routine to verify that $\pi_{s(a, b, c) s\left(a^{\prime}, b^{\prime}, c^{\prime}\right)}^{\varpi} f(t)=\pi_{s\left(a+a^{\prime}, b+b^{\prime}, c+c^{\prime}+a b^{\prime}\right)}^{\varpi} f(t)=p i_{s(a, b, c)}^{\varpi} \circ \pi_{s\left(a^{\prime}, b^{\prime}, c^{\prime}\right)}^{\varpi} f(t)$.
(2) Furthermore, $\left|\pi_{s(a, b, c)}^{\varpi} f(t)-\pi_{s\left(a^{\prime}, b^{\prime}, c^{\prime}\right)}^{\infty} f(t)\right| \leq$ $\leq \max \left(\left|\exp _{\varpi}(b t+c)-\exp _{\varpi}\left(b^{\prime} t+c^{\prime}\right)\right||f(t+a)|,\left|\exp _{\varpi}\left(b^{\prime} t+c^{\prime}\right)\right|\left|f(t+a)-f\left(t+a^{\prime}\right)\right|\right) \leq$ $\max \left(\left|\varpi\left(\left(b-b^{\prime}\right) t+\left(c-c^{\prime}\right)\right)\right|\|f\|,\left|f(t+a)-f\left(t+a^{\prime}\right)\right|\right) \leq$
$\max \left(\max \left(\left|b-b^{\prime}\right|,\left|c-c^{\prime}\right|\right)\|f\|,\left|f(t+a)-f\left(t+a^{\prime}\right)\right|\right)$.
Since \mathcal{D} is a metric compact space, continuity of functions implies uniform continuity. Hence for $\varepsilon>0$, there exists $\eta_{\varepsilon}>0$ such that if $\left|\theta-\theta^{\prime}\right|<\eta_{\varepsilon}$ then $\left|f(\theta)-f\left(\theta^{\prime}\right)\right|<\varepsilon$. It follows that for $\left|a-a^{\prime}\right|=\left|a+t-\left(t+a^{\prime}\right)\right|<\eta_{\varepsilon}$, one has $\left|f(t+a)-f\left(t+a^{\prime}\right)\right|<\varepsilon, \forall t \in \mathcal{D}$. According to the above inequality, if $\left\|s(a, b, c)-s\left(a^{\prime}, b^{\prime}, c^{\prime}\right)\right\| \leq \min \left(\varepsilon /\|f\|, \eta_{\varepsilon}\right)$, one sees that $\left|\pi_{s(a, b, c)} f(t)-\pi_{s\left(a^{\prime}, b^{\prime}, c^{\prime}\right)} f(t)\right|<\varepsilon, \forall t \in \mathcal{D}$, which implies that $\left\|\pi_{s(a, b, c)} f-\pi_{s\left(a^{\prime}, b^{\prime}, c^{\prime}\right)} f\right\|<\varepsilon$. It follows that the representation π is continuous.

The tangent operators

(a) $\varpi \neq 0$

By definition, one has $\pi_{s(a, 0,0)} f(t)=f(t+a)=\tau_{a} f(t)$
$\pi_{s(0, b, 0)} f(t)=\exp _{\varpi}(b t) f(t)$ and $\pi_{s(0,0, c)} f(t)=\exp _{\varpi}(c) f(t)$. (b)

Let us consider the quotients :
(i) $\quad \Delta_{a} f(t)=\frac{f(t+a)-f(t)}{a}, a \neq 0$
(ii) $\quad M_{b} f(t)=\frac{\exp _{\varpi}(b t) f(t)-f(t)}{b}=\frac{\exp _{\varpi}(b t)-1}{b} f(t), b \neq 0$ and
(iii) $\quad \eta_{c} f(t)=\frac{\exp _{\varpi}(c) f(t)-f(t)}{c}=\frac{\exp _{\varpi}(-c)-1}{c} f(t), c \neq 0$.
$(i)^{\prime} \quad$ If a tends towards 0 , since there exist continuous functions on \mathcal{D} that
are not derivable, the limit $\lim _{a \rightarrow 0} \frac{f(t+a)-f(t)}{a}$ does not always exists.
However this limit exists for (strictly) differentiable functions and defines an unbounded linear operator of $\mathcal{C}(\mathcal{D}, K)$ whose domain contains the space of strictly differentiable functions of \mathcal{D} in K.
But, on the other hand the following limits exist and are uniform limits
$(i i)^{\prime} \quad \lim _{b \rightarrow 0} M_{b} f(t)=\lim _{b \rightarrow 0} \frac{\exp _{\varpi}(b t)-1}{b} f(t)=\varpi t f(t)$
$(i i i)^{\prime} \quad \lim _{c \rightarrow 0} \frac{\exp _{\varpi}(c) f(t)-f(t)}{c}=\lim _{c \rightarrow 0} \frac{\exp _{\varpi}(c)-1}{c} f(t)=\varpi f(t)$.
We are ready for the statement of the following ultrametric counterpart of classical Schrödinger representations.

Theorem 2.2. Assume that \mathcal{D} is a compact unitary subring of the valuation subring of K.
Consider ϖ a non zero element of E_{p}.
Then the continuous linear representation $\left(\mathcal{H}(3, \mathcal{D}), \pi^{\varpi}, \mathcal{C}(\mathcal{D}, K)\right)$ is topologically irreducible

Proof

Let W be a closed invariant linear subspace of $\mathcal{C}(\mathcal{D}, K)$.
$-(a)-\quad$ One sees that W is stable by the quotient maps M_{b} and by passing to limit it is stable by the $\varpi m(f)$ where $m(f)(t)=t f(t)$. By linearity and density of the set of polynomial functions [by Stone-Weierstrass-Kaplansky theorem, see for instance [10]], one obtains that for any continuous function g of \mathcal{D} in K and any $f \in W, \quad g f$ belongs to W. In other words W is an ideal of $\mathcal{C}(\mathcal{D}, K)$. $-(b)-$
Let $f \in W, f \neq 0$ and let us consider $0<\varepsilon^{\prime}<\|f\|$, then there exist $t_{\varepsilon^{\prime}} \in \mathcal{D}$ such that $0<\varepsilon=\|f\|-\varepsilon^{\prime}<\left|f\left(t_{\varepsilon^{\prime}}\right)\right|$. Therefore $O_{\varepsilon}=\{t \in \mathcal{D} /|f(t)|>\varepsilon\}$ is an open and closed non empty subset of \mathcal{D}. Let h_{ε} be the function such that $h_{\varepsilon}(t)=\frac{1}{f(t)}$ if $t \in O_{\varepsilon}$ and $h_{\varepsilon}(t)=0$ otherwise. It is a continuous function such that $h_{\varepsilon} f=\chi_{O_{\varepsilon}}$, the characteristic function of O_{ε} [cf. [10], Proof of Theorem 6.27]. Since W is an ideal, $\chi_{O_{\varepsilon}}=h_{\varepsilon} f$ belongs to W. On the other hand $\pi_{s(-a, 0,0)} \chi_{O_{\varepsilon}}=\tau_{-a} \chi_{O_{\varepsilon}}=\chi_{a+O_{\varepsilon}} \in W, \forall a \in \mathcal{D}$. One sees that $\mathcal{D}=\bigcup_{a \in \mathcal{D}}\left(a+O_{\varepsilon}\right)$.
Since \mathcal{D} is compact, one has a finite covering $\mathcal{D}=\bigcup_{1 \leq j \leq \nu}\left(a_{j}+O_{\varepsilon}\right)$.
Applying the inclusion-exclusion formula for characteristic functions one sees that $1=\chi_{\mathcal{D}}=$ $\chi_{\cup_{1 \leq 1 \leq \nu}\left(a_{i}+O_{\varepsilon}\right)}=\sum_{j=1}^{\nu} \chi_{a_{j}+O_{\varepsilon}}+\sum_{k=2}^{\nu}(-1)^{k-1} \sum_{1 \leq j_{1}<j_{2}<\cdots<j_{k} \leq \nu} \chi_{a_{j_{1}}+O_{\varepsilon}} \cdots \chi_{a_{j_{k}}+O_{\varepsilon}}$ belongs to the ideal W, as any $\chi_{a_{j}+O_{\varepsilon}}$ does. Therefore $W=\mathcal{C}(\mathcal{D}, K)$.
We have finished proving that the representation π^{ϖ} is topologically irreducible.
We have putted π^{ϖ} the linear representation associated to $\varpi \in E_{p} \backslash\{0\}$ such that $\pi_{s(a, b, c)}^{\varpi} f(t)=\exp _{\varpi}(b t+c) f(t+a)$.

Corollary 2.3.

(i) Let $\varpi_{1}, \varpi_{2} \in E_{p} \backslash\{0\}$.

Then the representations $\pi^{\varpi_{1}}$ and $\pi^{\varpi_{2}}$ are equivalent if and only if $\varpi_{1}=\varpi_{2}$
(ii) Let $c \in \mathcal{D}$, then $\exp (c \varpi) \cdot i d$ is an intertwining operator of the representation π^{ϖ}. If φ is an intertwining operator of the representation π^{ϖ}, then $\varphi=\varphi(1) i d$, with $\varphi(1)$ a constant in K. (Schur Lemma)

Proof

(i) is easy
(ii) Let φ be an intertwining operator of the representation π^{ϖ}, that is $\pi_{s}^{\varpi} \circ \varphi=\varphi \circ \pi_{s}^{\varpi}, \forall s \in$ $\mathcal{H}(3, \mathcal{D})$. In particular $\pi_{s(0, b, 0)}^{\varpi} \circ \varphi(f)=\exp _{\varpi b} \varphi(f)=\varphi\left(\exp _{\varpi_{2} b} f\right)$. Hence for $b \neq 0$, one has $M_{b} \varphi(f)=\varphi\left(M_{b} f\right)$. When b tends towards 0 , one has $M_{b}(t) \rightarrow \varpi t$. Hence $\varpi t \varphi(f)=\varphi(\varpi t f) \Longrightarrow$ $t \varphi(f)=\varphi(t f)$.
From what one deduces that $\varphi(g f)=g \varphi(f) \Longrightarrow \varphi(g)=\varphi(1) g$. That is $\varphi=\varphi(1) i d$.
Moreover since $\tau_{a} \circ \varphi=\varphi \circ \tau_{a} \Longrightarrow \tau_{a} \varphi(f)=\varphi\left(\tau_{a} f\right)=\varphi(1) \tau_{a} f$, one has $\tau_{a} \varphi(1)=\varphi(1) \tau_{a} 1 .=\varphi(1)$. That is $\varphi(1)(x+a)=\varphi(1)(x), \forall a, x \in \mathcal{D}$. Hence $\varphi(1)(a)=\varphi(1)(0), \forall a \in \mathcal{D}$. That is $\varphi(1)$ is a constant function, element of the field K

EIGHTH INTERNATIONAL CONFERENCE ON P-ADICMATHEMATICAL PHYSICS AND ITS APPLICATIONSP-ADICS, 20

Scholie

(α) The space $\mathcal{C}^{1}(\mathcal{D}, K)$ of strictly differentiable functions of \mathcal{D} in K is a subspace of $\mathcal{C}(\mathcal{D}, K)$ invariant by any representation π^{ϖ}. Which with its own topology is topologically irreducible although it is a dense subspace of the space of continuous functions. Any strictly differentiable function f has a derivative f^{\prime} that is a continuous function not necessary strictly differentiable. Then the operator of derivation is an unbounded operator that domain contains $\mathcal{C}^{1}(\mathcal{D}, K)$ with values in $\mathcal{C}(\mathcal{D}, K)$.
(β) The space $\mathcal{A}(\mathcal{D}, K)$ of analytic functions of \mathcal{D} in K is another subspace of $\mathcal{C}(\mathcal{D}, K)$ that is a non closed subspace invariant by π^{ϖ}. We will be concerned with such representation in the sequel.
(γ) - The case when $\mathcal{D}=\mathbb{Z}_{p}$ can be of particular interest.
Indeed we have described all the continuous characters κ of \mathbb{Z}_{p} in K^{\star}. To any character $\kappa \in \widehat{\mathbb{Z}_{p}}$ one can associate a continuous linear representation π^{κ} of $\mathcal{H}\left(3, \mathbb{Z}_{p}\right)$ in the space $\mathcal{C}\left(\mathbb{Z}_{p}, K\right)$ by setting for any continuous function and any $s=s(a, b, c) \in$ $\mathcal{H}\left(3, \mathbb{Z}_{p}\right): \pi_{s}^{\kappa} f(t)=\kappa(b t+c) f(t+a)$. Unless $\kappa(1)$ is a p^{ν}-root of unity in K, what is said for the above representation associated to an analytic character remains mutatis mutandis true.

- If $\kappa(1)$ is a p^{ν}-root of unity, then the subspace of locally constant functions $\mathcal{C}\left(\mathbb{Z}_{p}, K\right)^{p^{\nu} \mathbb{Z}_{p}}=\left\{f: \mathbb{Z}_{p} \longrightarrow K / f\left(t+t^{\prime}\right)=f(t), \forall t^{\prime} \in p^{\nu} \mathbb{Z}_{p}\right\}$ is invariant by π^{κ}. On can show that the restriction of π^{κ} to this subspace is a finite dimensional irreducible linear representation.

(δ) The one parameter subgroups associated to the representation π^{ϖ}.

The representation π^{ϖ} is not smooth.
However one has the following one parameter subgroups associated to π^{ϖ}. That is group homomorphisms of \mathcal{D} in the group $\operatorname{Aut}(\mathcal{C}(\mathcal{D}, K))$ of the linear automorphisms of the Banach space $\mathcal{C}(\mathcal{D}, K)$.
$\left(\delta_{1}\right)$ The first is defined by the map $a \longrightarrow \tau_{a}$, which is not a smooth one parameter group.
$\left(\delta_{\mathbf{2}}\right)$ The second is the map $b \longrightarrow \pi_{s(0, b, 0)}^{\varpi}$. This one parameter group is smooth and if one considers the linear operator m defined by setting $m(f)(t)=t f(t)$, one has for any element $b \in \mathcal{D}$ the linear automorphism $\exp _{\varpi b}(m)=\exp _{\varpi}(b m)=\sum_{n \geq 0} \frac{\varpi^{n} b^{n}}{n!} m^{n}$ of $\mathcal{C}(\mathcal{D}, K)$ and one has $\exp _{\varpi}(b m) f=$ $=\exp _{\varpi b} \cdot f$ for any continuous function f of \mathcal{D} in K
$\left(\delta_{\mathbf{3}}\right) \quad$ The third is given by the smooth character $\exp _{\varpi}: c \longrightarrow \pi_{s(0,0, c)}^{\varpi}$.
Notice that one has $\tau_{a} \circ m-m \circ \tau_{a}=a \tau_{a}, \forall a \in \mathcal{D}$.

3. Analytic representations

In this section we consider a non necessary compact, closed unitary subring \mathfrak{D} of the valuation ring $\Lambda_{K}=\Lambda$ of the complete valued field K extension of the field of p-adic numbers \mathbb{Q}_{p}. We have noticed that considering the space of analytic fucntions $\mathcal{A}(\mathfrak{D}, K)$, if $\exp _{\varpi}$ is an analytic character of \mathbb{Z}_{p}, then one can defines a linear representation $U=U^{\varpi}$ of the Heisenberg group $\mathcal{H}(3, \mathfrak{D})$ in $\mathcal{A}(\mathfrak{D}, K)$ such that if $s=s(a, b, c)$ is an element of $\mathcal{H}(3, \mathfrak{D})$ and f an analytic function \mathfrak{D} in K, then one has $U_{s(a, b, c)} f(t)=\exp _{\varpi}(b t+c) f(t+a)$. The space $\mathcal{A}(\mathfrak{D}, K)$ is complete with respect to the Gauss norm, but if the field K is of discrete valuation the Gauss norm differs from the uniform norm, we consider $\mathcal{A}(\mathfrak{D}, K)$ rather as the Tate algebra in one indeterminate, that is the subalgebra $K<z>$ of the algebra of formal power series whose elements are the formal power series $f(z)=\sum_{n \geq 0} a_{n} z^{n}$ such that $\lim _{n \rightarrow+\infty}\left|a_{n}\right|=0$. With the Gauss norm $\|f\|=\sup _{n \geq 0}\left|a_{n}\right|$, the algebra $K<z>$ becomes an ultrametric unitary algebra with a multiplicative norm. The elements of $K<z>$ are also called the restricted power series with cœefficients in K.

3.1. Substitution in restricted power series.

Let $K[[X]]$ be the ring of formal power series with cœefficients in K. For $f=\sum_{n \geq 0} a_{n} X^{n} \in K[[X]]$, one has in $K[[X, Y]]=K[[X]][[Y]]$ the formal Taylor expansion $f(X+Y)=\sum_{n \geq 0} a_{n}(X+Y)^{n}=$ $\sum_{j \geq 0} f^{[j]}(X) Y^{j}:$
where $f^{[j]}(X)=\sum_{i \geq 0}\binom{i+j}{i} a_{i+j} X^{i}$. One has $f^{[1]}(X)=\sum_{i \geq 0}(i+1) a_{i+1} X^{i}=f^{\prime}(X)$ the formal derivative of f and if the field K is of characteristic 0 , one sees that $f^{[j]}(X)=\frac{f^{(j)}(X)}{j!}$, where $f^{(j)}$ is the $j^{t h}$-derivative of f.

Now let $f=\sum_{n \geq 0} a_{n} z^{n} \in K<z>$. For any integer j, one sees that $f^{[j]}(z)=\sum_{i \geq 0}\binom{i+j}{i} a_{i+j} z^{i}$ belongs to $K<z>$, with $\left\|f^{[j]}\right\|=\sup _{i \geq 0}\left|\binom{i+j}{i}\right|\left|a_{i+j}\right| \leq \sup _{i \geq 0}\left|a_{i+j}\right|$.
Since $\lim _{j \rightarrow+\infty}\left|a_{j}\right|=0$, one has $\lim _{j \rightarrow+\infty} \sup _{i \geq 0}\left|a_{i+j}\right|=\limsup _{j \rightarrow+\infty}\left|a_{j}\right|=0$ which implies $\lim _{j \rightarrow+\infty}\left\|f^{[j]}\right\|=0$.
Let $h(z)=\sum_{n \geq 0} b_{n} z^{n}=b_{0}+g(z) \in K<z>$ be such that $\|h\|=\sup _{n \geq 0}\left|b_{n}\right|=$ $\left.\max \left|b_{0}\right|,\|g\|\right) \leq 1$.

EIGHTH INTERNATIONAL CONFERENCE ON P-ADICMATHEMATICAL PHYSICS AND ITS APPLICATIONSP-ADICS, 20
For the integers $i, j \geq 0$, one has $\left|\binom{i+j}{i}\right|\left|a_{i+j}\right|\left\|g^{i}\right\| \leq\left|a_{i+j}\right|\|g\|^{i} \leq\left|a_{i+j}\right|$.
Hence $\lim _{i \rightarrow+\infty}\left|\binom{i+j}{i}\right|\left|a_{i+j}\right|\left\|g^{i}\right\|=0, \forall j \geq 0$ fixed, and one has the convergent sum of restricted power series $\sum_{i \geq 0}\binom{i+j}{i} a_{i+j} g(z)^{i}, \forall j \geq 0$, that is for any integer $j \geq 0$ the power series
$\sum_{i \geq 0}\binom{i+j}{i} a_{i+j} g(z)^{i}$ belongs to $K<z>$.
Since $g(0)=0$, one has by substitution of formal power series that $f^{[j]} \circ g(z)=\sum_{i \geq 0}\binom{i+j}{i} a_{i+j} g(z)^{i}$ belongs to $K<z>$.
Moreover $\left\|f^{[j]} \circ g\right\| \leq \sup _{i \geq 0}\left|\binom{i+j}{i}\right|\left|a_{i+j}\right|\left\|g^{i}\right\| \leq \sup _{i \geq 0}\left|\binom{i+j}{i}\right|\left|a_{i+j}\right|=\left\|f^{[j]}\right\|, \forall j \geq 0$.
On the other hand, since $\left|b_{0}\right| \leq 1$, one has $\left|b_{0}\right|^{j}\left\|f^{[j]} \circ g\right\| \leq\left\|f^{[j]}\right\|$. One then deduces that $\lim _{j \geq 0}\left|b_{0}\right|^{j}\left\|f^{[j]} \circ g\right\|=0$ and one obtains the convergent sum of restricted power series

$$
\sum_{j \geq 0} b_{0}^{j} f^{[j]} \circ g(z)=f\left(b_{0}+g(z)\right)=f(h(z)), \text { an element of } K<z>
$$

In particular for α and β elements of the valuation ring of K; one has an element of $K<z>$ defined by setting $f(\alpha z+\beta)=\sum_{j \geq 0} \beta^{j} f^{[j]}(\alpha z)$.

3.2. Linear representations of $\mathcal{H}(3, \mathfrak{D})$ in $K\langle z\rangle$.

For $\alpha, \beta \in \mathfrak{D}$, we have seen that one can substitute $\alpha z+\beta$ in f obtaining again an element of $K<z>$ such that $f(\alpha z+\beta)=\sum_{j \geq 0} \beta^{j} f^{[j]}(\alpha z)$ and $f^{[j]}(\alpha z)=\sum_{i \geq 0}\binom{i+j}{i} a_{i+j} \alpha^{i} z^{i}$.
Let us remind that if $|\varpi|<|p|^{\frac{1}{p-1}}$, then the series $\exp _{\varpi}(z)=\sum_{n \geq 0} \frac{\varpi^{n}}{n!} z^{n}$, is a non constant restricted power series for $\varpi \neq 0$, that is a non constant element of the Tate algebra $K<z>$. Moreover $\left\|\exp _{\varpi}\right\|=\sup _{n \geq 0} \frac{|\varpi|^{n}}{|n!|}=1$.

Now, let $s=s(a, b, c)$ be an element of $\mathcal{H}(3, \mathfrak{D})$, the Heisenberg group with entries in the closed unitary subring \mathfrak{D} of the valuation Λ of the complete valued field K extension of \mathbb{Q}_{p}.
For $f \in K\langle z\rangle$, let us set $U_{s(a, b, c)}^{\varpi} f(z)=\exp _{\varpi}(b z+c) f(z+a)$.
One obtains by the way an element $U_{s(a, b, c)}^{\varpi} f$ of $K<z>$.
It is obvious that $U_{s(a, b, c)}^{\varpi}$ is a continuous linear endomorphism of $K<z>$.
One verifies as already done above that $U_{s(a, b, c) s\left(a^{\prime}, b^{\prime}, c^{\prime}\right)}^{\varpi}=U_{s(a, b, c)}^{\varpi} \circ U_{s\left(a^{\prime}, b^{\prime}, c^{\prime}\right)}^{\varpi}$.

Hence the map $U^{\varpi}: \mathcal{H}(3, \mathfrak{D}) \longrightarrow \mathcal{L}(K<z>)$ such that
$U_{s(a, b, c)}^{\varpi} f(z)=\exp _{\varpi}(b z+c) f(z+a)$ is a linear representation.
Since $\exp _{\varpi}(b z+c)=\sum_{n \geq 0} \frac{\varpi^{n}}{n!}(b z+c)^{n}$, with $\left\|(b z+c)^{n}\right\|=\|b z+c\|^{n}=\max (|b|,|c|)^{n} \leq$ 1, one has $\frac{|\varpi|^{n}}{|n!|}\left\|(b z+c)^{n}\right\| \leq \frac{|\varpi|^{n}}{|n!|}<|p|^{n\left(\nu-\frac{1}{p-1}\right)}<1, \forall n \geq 1$ and then $\| \exp _{\varpi}(b z+$ c) $\|=1$.

On the other hand one has $U_{s(a, 0,0)}^{\varpi} f(z)=f(z+a)=\tau_{a} f(z)=\sum_{j \geq 0} a^{j} f^{[j]}(z)$, then $\left\|U_{s(a, 0,0)}^{\varpi} f\right\| \leq \sup _{j \geq 0}|a|^{j}\left\|f^{[j]}\right\| \leq \sup _{j \geq 0}\left\|f^{[j]}\right\| \leq\|f\|$. In the same way, one has $\left\|U_{s(-a, 0,0)}^{\varpi} f\right\| \leq\|f\|$. One then sees that $\left\|U_{s(a, 0,0)}^{\varpi} f\right\|=\|f\|, \forall a \in \mathcal{D}$.
It follows that $\left\|U_{s(a, b, c)}^{\varpi} f\right\|=\left\|\exp _{\varpi}(b z+c)\right\|\left\|U_{s(a, 0,0)}^{\varpi} f\right\|=\|f\|$.
The representation is then said to be unitary.

Lemma 3.1. The linear representation $\left(\mathcal{H}(3, \mathfrak{D}), U^{\varpi}, K\langle z\rangle\right)$ is continuous.

Proof

For $a \in \mathfrak{D}$ and $f \in K<z>$, one has $\tau_{a} f=\sum_{j \geq 0} a^{j} f^{[j]}$. One verifies that $\left\|\tau_{a} f-\tau_{a^{\prime}} f\right\| \leq \sup _{j \geq 1}\left|a^{j}-a^{\prime j}\right|\left\|f^{[j]}\right\| \leq\left|a-a^{\prime}\right| \sup _{j \geq 1}\left\|f^{[j]}\right\| \leq\left|a-a^{\prime}\right|\|f\|$.
On the other hand $\left\|\exp _{\varpi}(b z+c)-\exp _{\varpi}\left(b^{\prime} z+c^{\prime}\right)\right\| \leq \sup _{n \geq 1}\left|\frac{\varpi^{n}}{n!}\right|\left\|(b z+c)^{n}-\left(b^{\prime} z+c^{\prime}\right)^{n}\right\|$ $\leq \sup _{n \geq 1}\left|\frac{\varpi^{n}}{n!}\right| \cdot \max \left(\left|b-b^{\prime}\right|,\left|c-c^{\prime}\right|\right) \leq \max \left(\left|b-b^{\prime}\right|,\left|c-c^{\prime}\right|\right)$
Let $s(a, b, c)$ and $s\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$ be two elements of the Heisenberg group, one obtains $\left\|U_{s(a, b, c)}^{\varpi} f-U_{s\left(a^{\prime}, b^{\prime}, c^{\prime}\right)}^{\varpi} f\right\| \leq$
$\leq \max \left(\left\|\exp _{\varpi}(b z+c)\right\|\left\|\tau_{a} f-\tau_{a^{\prime}} f\right\|,\left\|\exp _{\varpi}(b z+c)-\exp _{\varpi}\left(b^{\prime} z+c^{\prime}\right)\right\|\left\|\tau_{a^{\prime}} f\right\|\right)=$ $=\max \left(\left\|\tau_{a} f-\tau_{a^{\prime}} f\right\|,\left\|\exp _{\varpi}(b z+c)-\exp _{\varpi}\left(b^{\prime} z+c^{\prime}\right)\right\|\right)\|f\|$
Summarizing we have $\left\|U_{s(a, b, c)}^{\varpi} f-U_{s\left(a^{\prime}, b^{\prime}, c^{\prime}\right)}^{\varpi} f\right\| \leq \max \left(\left|a-a^{\prime}\right|,\left|b-b^{\prime}\right|,\left|c-c^{\prime}\right|\right)\|f\|=$ $=\left\|s(a, b, c)-s\left(a^{\prime}, b^{\prime}, c^{\prime}\right)\right\|\|f\|$ and the map $s(a, b, c) \longrightarrow U_{s(a, b, c)}^{\varpi} f$ is continuous.

EIGHTH INTERNATIONAL CONFERENCE ON P-ADICMATHEMATICAL PHYSICS AND ITS APPLICATIONSP-ADICS, 20

The linear representation U^{ϖ} is smooth

By definition, one has $U_{s(a, 0,0)}^{w} f(z)=f(z+a)=\tau_{a} f(z)$
$U_{s(0, b, 0)}^{\varpi} f(z)=\exp _{\varpi}(b z) f(z)$ and $U_{s(0,0, c)}^{\varpi} f(z)=\exp _{\varpi}(c) f(z)$.
As previously, let us consider in $K<z>$, for $a \neq 0, b \neq 0$ and $c \neq 0$, the quotients :
(i) $\quad \Delta_{a}(f)=\frac{\tau_{a} f-f}{a}$
(ii) $\quad M_{b}(f)=\frac{\exp _{\varpi}(b z) f-f}{b}=\frac{\exp _{\varpi}(b z)-1}{b} f$ and
(iii) $\quad \eta_{c}(f)=\frac{\exp _{\varpi}(c) f-f}{c}=\frac{\exp _{\varpi}(c)-1}{c} f$.

Since $\tau_{a} f=\sum_{j \geq 0} a^{j} f^{[j]}=f+a f^{\prime}+\sum_{j \geq 2} a^{j} f^{[j]}$, one immediately sees that
$\Delta_{a}(f)=f^{\prime}+a \sum_{j \geq 2} a^{j-2} f^{[j]}$ and $\left\|\Delta_{a}(f)-f^{\prime}\right\| \leq|a|\|f\| \Longrightarrow \sup _{f \neq 0} \frac{\left\|\Delta_{a}(f)-f^{\prime}\right\|}{\|f\|} \leq|a|$.
It follows that in $\mathcal{L}(K<z>)$ one has:

$$
\lim _{a \rightarrow 0} \Delta_{a}=\partial, \text { where } \partial(f)=f^{\prime} . \text { Furthermore }\|\partial\|=1
$$

In the same way, one obtains $M_{b}(f)=\frac{\exp _{\varpi}(b z) f-f}{b}=\varpi z \cdot f+b\left(\sum_{n \geq 2} \frac{\varpi^{n}}{n!} b^{n-2} z^{n}\right) f$.
with $\left\|M_{b}(f)-\varpi z \cdot f\right\|<|b|\|f\|$, and $\lim _{b \rightarrow 0} \sup _{\|f\| \neq 0} \frac{\left\|M_{b}(f)-\varpi z \cdot f\right\|}{\|f\|}=0$. That is, in $\mathcal{L}(K<z>)$, one has:
$\lim _{b \rightarrow 0} M_{b}=\varpi m_{z}$ where $m_{z}(f)=z f$ and $\left\|m_{z}(f)\right\|=\|f\| \quad$ (ii) $)^{\prime}$.
The formulas (i)' and (ii)' are used in the proof of the forthcoming theorem.
Obviously $\eta_{c}(f)=\frac{\exp _{\varpi}(c) f-f}{c}=\varpi f+c\left(\sum_{n \geq 2} \frac{\varpi^{n}}{n!} c^{n-2}\right) f$.
Then $\left\|\eta_{c}(f)-\varpi f\right\| \leq|c| \sup _{n \geq 2} \frac{\left|\varpi^{n}\right|}{|n!|}\|f\|<|c|\|f\|$ and one obtains $\lim _{c \rightarrow 0} \eta_{c}=\varpi \cdot i d$.

Theorem 3.2. Assume that $0 \neq \varpi \in E_{p}$.
Then the continuous linear representation $\left(\mathcal{H}(3, \mathfrak{D}), U^{\varpi}, K<z>\right)$ is topologically irreducible.

Proof

Let W be a closed linear subspace of $K<z>$ invariant by the representation U^{ϖ}.
(1) Let f be an element of W, for any $a \in \mathfrak{D}$, one has $\tau_{a} f=U_{s(a, 0,0)} f \in W$. Hence $\Delta_{a}(f)=\frac{\tau_{a} f-f}{a}$ belongs to W.
Since W is a closed linear subspace, one sees that $\lim _{a \rightarrow 0} \Delta_{a} f=f^{\prime}=\partial(f)$ also belongs to W.
Hence W is stable by the derivative operator ∂ and for any integer $n \geq 0$, one has $\partial^{\circ n}(W) \subset W$.
(2) In the same way, W is stable by $M_{b}, \forall b \in \mathfrak{D}$ and then it is stable by the limit $\lim _{b \longrightarrow 0} M_{b}(f)=\varpi m_{z}(f)$, where $m_{z}(f)=z f$. Hence $z^{n} W \subset W, \forall n \geq 0$. Therefore by linearity and continuity, for any $g \in K<z\rangle$ and for any $f \in W$, one has $g f \in W$. That is W is an ideal of $K<z>$.
(3) Assume that $W \neq 0$. Let $f \in W, f \neq 0$. According to Weierstrass preparation theorem (see for instance [5]) there exists a polynomial P and a restricted power series g such that $f=P g$, with $\|g-1\|<1$, therefore g is invertible in $K<z>$. It follows that $P=g^{-1} f$ belongs to W.
Let ν be the degree of the polynomial P, then $\partial^{\circ \nu} P=\nu!a_{\nu} \in W$ and the formal power series 1 belongs to W. It follows that the nonzero ideal W is equal to $K<z>$. Therefore the linear representation U^{ϖ} is topologically irreducible.

Proposition 3.3.

The algebra $E n d_{U^{\infty}}(K<z>)$ of the continuous linear intertwining operators of the representation U^{ϖ} is equal to K.id, where id is the identity map of $K<z>$. (Schur lemma)

Proof

Let φ be a continuous linear endomorphism of $K<z>$ such that $\varphi \circ U_{s(a, b, c)}^{\varpi}=U_{s(a, b, c)}^{\varpi} \circ \varphi, \forall s(a, b, c) \in \mathcal{H}(3, \mathfrak{D})$.
One immediately sees, on one hand that $\varphi \circ \Delta_{a}=\Delta_{a} \circ \varphi, \forall a \in \mathfrak{D} \Longrightarrow \varphi \circ \partial=\partial \circ \varphi$. On the other hand $\varphi \circ M_{b}=M_{b} \circ \varphi, \forall b \in \mathfrak{D} \Longrightarrow \varphi \circ m_{z}=m_{z} \circ \varphi$.
Hence for $f \in K<z>$, one has $\varphi\left(m_{z}(f)\right)=\varphi(z f)=m_{z}(\varphi(f))=z \varphi(f)$ and $\varphi\left(z^{n} f\right)=z^{n} \varphi(f)$. . As above by linearity and continuity, $\varphi(g f)=g \varphi(f), \forall g \in K<$ $z>$. In particular $\varphi(g)=\varphi(1) g, \forall g \in K<z>$.
Setting $\varphi(1)=\sum_{n \geq 0} \alpha_{0, n} z^{n}$, one obtains $\varphi \circ \partial(1)=\varphi(0)=0=\partial \circ \varphi(1)=$

EIGHTH INTERNATIONAL CONFERENCE ON P-ADICMATHEMATICAL PHYSICS AND ITS APPLICATIONSP-ADICS, 20
$=\sum_{>0}(n+1) \alpha_{0, n+1} z^{n} \Longrightarrow \alpha_{0, n+1}=0, \forall n \geq 0$, and $\varphi(1)=a_{0,0} \in K$.
Hence $\varphi=a_{0,0} \cdot i d$.
REMARK 3.4. The representations $U^{\varpi_{1}}$ and $U^{\varpi_{2}}$ are equivalent if and only if $\varpi_{1}=\varpi_{2}$.

3.3. The completion of the Weyl algebra $A_{1}(K)$.

Remarks

$-(i)-\quad$ One has three one parameter groups attached to U^{ϖ}.
Namely the group homomorphisms of \mathfrak{D} into $A u t_{K}(K<z>)$ defined by :
-(1)- $a \rightarrow \tau_{a}=\exp (a \partial)$ (strong convergence)
-(2)- $b \rightarrow \exp _{\varpi}\left(b m_{z}\right)=M_{\exp _{\varpi}(b z)}$, the operators of multiplication by the restricted formal power series $\exp _{\varpi}(b z)$.
-(3)- $c \rightarrow \lambda_{\exp _{\varpi}(c)}$, where $\lambda_{\exp _{\varpi}(c)}$ is the linear automorphism of $K<z>$ of multiplication by the scalar $\exp _{\varpi}(c)$.
-(ii)- Heisenberg commutation relation:

$$
\partial \circ m_{z}=m_{z} \circ \partial+i d
$$

Let $\mathfrak{H}=K . \partial+K . m_{z}+K . i d \subset \mathcal{L}(K<z>)$.
If one puts for $u, v \in \mathcal{L}(K<z>)$ the bracket $[u, v]=u \circ v-v \circ u$ one obtains, as for any associative algebra a Lie algebra structure on $\mathcal{L}(K<z>)$.

Since $\left[\partial, m_{z}\right]=i d$, it is readily seen that $\mathfrak{H}=K . \partial+K . m_{z}+K . i d$ is a three dimensional Lie subalgebra of $\mathcal{L}(K<z>)$ isomorphic to the K-Heisenberg Lie algebra of dimension 3 .

$$
-(i i i)-\quad \text { Matrix representation of } \partial \text { and } m_{z}
$$

Let us set $\psi_{n}=z^{n}$. Then $\left(\psi_{n}\right)_{n \geq 0}$ is an orthonormal basis of $K<z>$.
Let $\psi_{n}^{\star} \in \mathcal{L}(K<z>, K)$ be the dual basis element such that $<\psi_{n}^{\star}, \psi_{m}>=\delta_{n, m}$
One has $\partial\left(\psi_{n}\right)=n \psi_{n-1}=n<\psi_{n}^{\star}, \psi_{n}>\psi_{n-1}=n \psi_{n}^{\star} \otimes \psi_{n-1}\left(\psi_{n}\right)$.
That is $\partial=\sum_{n \geq 0} n \psi_{n}^{\star} \otimes \psi_{n-1}=\sum_{n \geq 0}(n+1) \psi_{n+1}^{\star} \otimes \psi_{n}$.
Let us consider the canonical scalar product on $K<z>$ such that for $f=\sum_{n \geq 0} a_{n} \psi_{n}$ and $g=\sum_{n \geq 0} b_{n} \psi_{n}$, one has $<f, g>=\sum_{n \geq 0} a_{n} b_{n}$.
Since $\partial=\sum_{\ell, j} \alpha_{\ell, j} \psi_{j}^{\star} \otimes \psi_{\ell}$, with $\alpha_{\ell, j}=0$ if $(\ell, j) \notin\{n+1, n\}$ and $\alpha_{n, n+1}=n+1$, for ℓ fixed $\alpha_{\ell, j}=0$ for $j \neq \ell+1$; hence $\lim _{j \rightarrow+\infty} \alpha_{\ell, j}=0$ and with respect to the scalar
product $<>$ the operator ∂ has an adjoint $\partial^{\star}={ }^{t} \partial \in \mathcal{L}(K<z>)$ [cf [1]] with ${ }^{t} \partial=\sum_{\ell, j} \alpha_{j, \ell} \psi_{j}^{\star} \otimes \psi_{\ell}=\sum_{n \geq 0}(n+1) \psi_{n}^{\star} \otimes \psi_{n+1}$.
That is ${ }^{t} \partial\left(\psi_{n}\right)=(n+1) \psi_{n+1}$
In the same way, one has $m_{z}\left(\psi_{n}\right)=\psi_{n+1}=\psi_{n}^{\star}\left(\psi_{n}\right) \psi_{n+1}=\psi_{n}^{\star} \otimes \psi_{n+1}\left(\psi_{n}\right)$.
Hence $m_{z}=\sum_{n \geq 0} \psi_{n}^{\star} \otimes \psi_{n+1}$.
One sees that m_{z} has an adjoint $m_{z}^{\star}={ }^{t} m_{z}=\sum_{n \geq 0} \psi_{n+1}^{\star} \otimes \psi_{n} \in \mathcal{L}(K<z>)$,
that is ${ }^{t} m_{z}\left(\psi_{n}\right)=\psi_{n-1}, n \geq 1$ and ${ }^{t} m_{z}\left(\psi_{0}\right)=0$

3.4. The Weyl algebra $A_{1}(K)$.

To go straight, we shall define, following the algebraic setting in [3], the Weyl algebra $A_{1}(K)$ to be the subalgebra of $\mathcal{L}(K<z>)$ generated by $\left\{m_{z}, \partial\right\}$.
In fact it is the algebra of differential operators of the algebra of polynomials $K[z]$. On the other hand, the abstract Weyl algebra is the quotient of the free algebra in two variables $K\{x, y\}$ by the two-sided ideal \mathcal{I} generated by $y x-x y-1$. And if K is of characteristic 0 , then sending x on m_{z} and y on ∂ one obtains an isomorphism of $K\{x, y\} / \mathcal{I}$ onto $A_{1}(K)$.
Any $u \in A_{1}(K)$ can be written in the unique form $u=\sum_{i, j} \alpha_{i, j} m_{z}^{i} \partial^{j}$ (see for instance loc. cit.). In the sequel, we identify z^{i} with the operator m_{z}^{i} and then write also $u=\sum_{i, j} \alpha_{i, j} z^{i} \partial^{j}$.
Let us set $\delta^{[j]}=\frac{\partial^{j}}{j!}$. One verifies that $\delta^{[i]} \delta^{[j]}=\binom{i+j}{i} \delta^{[i+j]}$. One says that $\left(\delta^{[j]}\right)_{i \geq 0}$ is an exponential sequence. For the integers $j \geq 0$ and $n \geq 0$, one has $\partial^{j}\left(z^{n}\right)=j!\binom{n}{j} z^{n-j}$ and $\delta^{[j]}\left(z^{n}\right)=\binom{n}{j} z^{n-j}$. Hence $\left\|\delta^{[j]}\left(z^{n}\right)\right\|=\left|\binom{n}{j}\right|$.
One sees that $\left\|\delta^{[j]}\right\|=\sup _{n \geq j}\left|\binom{n}{j}\right|=1$ and $\left\|\partial^{j}\right\|=|j!|$.
The following statements are counterparts of results obtained some years ago by the first author and Fana Tangara ([2]).

LEMMA 3.5. The family $\left(m_{z}^{i} \delta^{[j]}\right)_{(i, j) \in \mathbb{N} \times \mathbb{N}}$ is an orthonormal family of $A_{1}(K)$ for the norm of bounded linear operators.

EIGHTH INTERNATIONAL CONFERENCE ON P-ADICMATHEMATICAL PHYSICS AND ITS APPLICATIONS P-ADICS, 20

Proof

-(a)-
Let $f \in K<z>$, for $i \geq 0, j \geq 0$, one has $m_{z}^{i} \circ \delta^{[j]}(f)=z^{i} f^{[j]}$, then $\left\|m_{z}^{i} \circ \delta^{[j]}(f)\right\|=\left\|z^{i} \delta^{[j]}(f)\right\|=\left\|\delta^{[j]}(f)\right\| \leq\|f\| \Longrightarrow\left\|m_{z}^{i} \circ \delta^{[j]}\right\|=\left\|\delta^{[j]}\right\|=1$.
-(b)-
Let $u=\sum_{i, j} \alpha_{i, j} m_{z}^{i} \partial^{j}=\sum_{i, j} \beta_{i, j} z^{i} \delta^{[j]} \in A_{1}(K)$ one has $\|u\| \leq \max _{i, j}\left|\beta_{i, j}\right|\left\|m_{z}^{i} \delta^{[j]}\right\|=$ $\max _{i, j}\left|\beta_{i, j}\right|$. On the other hand $u\left(z^{0}\right)=u(1)=\sum_{i \geq 0} \beta_{i, 0} z^{i}$, then $\left\|u\left(z^{0}\right)\right\|=\sup _{i \geq 0}\left|\beta_{i, 0}\right| \leq$ $\|u\|$ By induction, one proves that $\max _{i \geq 0}\left|\beta_{i, \ell}\right| \leq\|u\|, \forall \ell \geq 0$. One concludes that $\|u\|=\max _{i, \ell}\left|\beta_{i, \ell}\right|$. That means that $\left(m_{z}^{i} \delta^{[j]}\right)_{i, j}$ is an orthonormal family of $A_{1}(K)$.

Proposition 3.6.

Let $\widetilde{A}_{1}(K)$ be the closure of the Weyl algebra $A_{1}(K)$ in the Banach algebra $\mathcal{L}(K<z>)$.

Then any element $u \in \widetilde{A}_{1}(K)$ can be written in the form of a unique summable family $u=\sum_{i, j} \beta_{i, j} m_{z}^{i} \delta^{[j]}$.
Moreover, one has $\|u\|=\sup _{i, j}\left|\beta_{i, j}\right|$, that is $\left(m_{z}^{i} \delta^{[j]}\right)_{i, j}$ is an orthonormal basis of $\widetilde{A}_{1}(K)$.

Proof
This is an easy consequence of the fact that the linear basis $\left(m_{z}^{i} \delta^{[j]}\right)_{(i, j) \in \mathbb{N} \times \mathbb{N}}$ of $A_{1}(K)$ is an orthonormal family in the Banach space $\mathcal{L}(K<z>)$.

Proposition 3.7.
For $u \in \widetilde{A}_{1}(K)$ and $f \in K<z>$ let us set $u . f=u(f)$.
Then $K\langle z\rangle$ is a left Banach module over $\widetilde{A}_{1}(K)$ and is topologically irreducible.

Proof

It runs as the proof of Theorem 3.2.

Proposition 3.8.
Any element $u \in \widetilde{A}_{1}(K)$ can be written in the unique form of convergent series

$$
\begin{gathered}
u=\sum_{j \geq 0} \frac{f_{j}}{j!} \partial^{j}=\sum_{j \geq 0} f_{j} \delta^{[j]}, \text { with } f_{j} \in K<z>, \quad \lim _{j \rightarrow+\infty}\left\|f_{j}\right\|=0 \text { and } \\
\|u\|=\sup _{j \geq 0}\left\|f_{j}\right\|
\end{gathered}
$$

Proof

Applying Proposition 3.5 to any generalized differential operator $u \in \widetilde{A}_{1}(K)$, one has the summable sum $u=\sum_{i, j} \beta_{i, j} m_{z}^{i} \delta^{[j]}$. This means that $\lim _{i, j}\left|\beta_{i, j}\right|=0$ along the Fréchet filter on $\mathbb{N} \times \mathbb{N}$. Or equivalently for any $j \geq 0, \lim _{i \longrightarrow+\infty}\left|\beta_{i, j}\right|=0$ and $\lim _{j \longrightarrow+\infty} \sup _{i \geq 0}\left|\beta_{i, j}\right|=0$.
Hence one has $u=\sum_{j \geq 0} \sum_{i \geq 0} \beta_{i, j} m_{z}^{i} \circ \delta^{[j]}=\sum_{j \geq 0} m_{f_{j}} \circ \delta^{[j]}=\sum_{j \geq 0} f_{j} \delta^{[j]}$, where $f_{j}=$ $\sum_{i \geq 0} \beta_{i, j} z^{i} \in K<z>$, with $\left\|f_{j}\right\|=\sup _{i \geq 0}\left|\beta_{i, j}\right|$.
And one concludes that $\sup \left\|f_{j}\right\|=\|u\|$.
From the relation $\delta^{[j]} g=\sum_{s+t=j} \delta^{[s]}(g) \delta^{[t]}$ and the expansion in Proposition 3.8, one gets a formula for the expansion of the product of two elements of $\widetilde{A}_{1}(K)$.

With the above notations if $u=\sum_{j \geq 0} \frac{f_{j}}{j!} \partial^{j}$, one has $\|u\|=\sup _{j \geq 0}\left\|f_{j}\right\|=\left\|f_{j_{0}}\right\|$. If j_{0} is the greatest integer such that $\|u\|=\left\|f_{j_{0}}\right\|$ then $\left\|f_{j}\right\|=\sup _{i \geq 0}\left|\beta_{i, j}\right|<\left\|f_{j_{0}}\right\|$. On the other hand let i_{0} be the greatest integer $j \geq 0$ such that $\left\|f f_{j_{0}}\right\|=\left|\beta_{i_{0}, j_{0}}\right|$, one has $\left|\beta_{i, j}\right|<\beta_{i_{0}, j_{0}} \mid, \forall i \geq, \forall j>j_{0}$ and $\|u\|=\left|\beta_{i_{0}, j_{0}}\right|$.
Considering the element $v=\sum_{i \leq i_{0}, j \leq j_{0}} \beta_{i, j} z^{i} \delta^{[j]}$ of $A_{1}(K)$,
one has $\|u-v\|=\left|\sup _{i>i_{0}, j>j_{0}} \beta_{i, j}\right|<\|u\|$, hence $\|u\|=\|v\|$. One says as for Tate algebra that v is a distinguished differential operator of degree $\left(i_{0}, j_{0}\right)$.
With this in hand, one has algorithm of division by distinguished differential operators. As a consequence, following [8] one has

Theorem 3.9.
The complete Weyl algebra $\widetilde{A}_{1}(K)$ is a simple, left noetherian ring with center K

Proof

For a proof, one can proceed as in [8]

THANK YOU

EIGHTH INTERNATIONAL CONFERENCE ON P-ADICMATHEMATICAL PHYSICS AND ITS APPLICATIONS P-ADICS, 20

References

[1] B. Diarra, Bounded linear operators on ultrametric Hilbert spaces. Afr Diaspora J. Math. 8 (2009), no. 2, 173-181.
[2] B. Diarra, F. Tangara, The p-adic quantum plane algebras and quatum Weyl algebra, p-Adic numbers, Ultrametric Analysis and Applications, 2009, Vol. 1, No. 2, 2009, 128-135.
[3] S. C. Coutinho, A primer of algebraic D-modules, London Mathematical Society Student Texts, 33, 2003.
[4] G.B. Folland, Harmonic analysis in phase space. Princeton University Press 1989.
[5] F. Q. Gouvêa, p-Adic numbers, An Introduction, Universitext, Springer, Second Edition 1997.
[6] J. Grassberger, G. Hrmann, A note on representations of the finite Heisenberg group and sums of greatest common divisors. Discrete Mathematics and Theoretical Computer Science, DMTCS, 2001, 4 (2), pp.91-100. hal-00958949
[7] M. Misaghian, The Representations of The Heisenberg over a finite Field, Armenian Journal of Mathematics, Volume 3, Number 4, 2010, 162-173.
[8] A. Pangalos, p-ad!c Weyl algebras, Inaugural-Dissertation, Universität Münster, 2007.
[9] A. M. Robert, A course in p-adic analysis, GTM 198, Springer 2000.
[10] A.C.M. van Rooij, Non-archimedean Functional Analysis, Marcel Dekker Inc, New-York (1978).
[11] W.H. Schikhof, Ultrametric calculus, An introduction to p-adic analysis Cambridge University Press, 1984
[12] J. Schulte Harmonic analysis on finite Heisenberg groups European Journal of Combinatorics 25 (2004) 327338

