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Abstract. Let K be a complete valued field extension of the field of p-adic numbers Qp. Let
D be a closed unitary subring of the valuation ring ΛK of K. Let H(3,D) be the 3-dimensional

Heisenberg group with entries in D. We shall give continuous linear representations of H(3,D)

in the space K < z > of restricted power series with cœfficients in K (= the Tate algebra in one
variable, i.e. the space of analytic functions on ΛK), analogous to Schrödinger representations

of the classical Heisenberg group. On the other hand, assuming that D is compact, we shall

obtain by the same way continuous linear representations of the profinite group H(3,D) in the
space of continuous functions C(D,K), other analogues of Schrödinger representations. These

representations are topologically irreducible. From the first representations, one obtains position
and momentum bounded operators satisfying Heisenberg commutation relation and the Weyl

algebra A1(K) as subalgebra of the algebra of bounded linear operators of K < z >. The closure

Ã1(K) of A1(K) is described.

1 Laboratoire de Mathématiques, UMR 6620 CNRS

Campus Universitaire des Cézeaux, 3 place Vasarely,
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1. Introduction

Let A be a commutative unitary ring. By definition the Heisenberg group on A
of order (dimension) 3 is the 3 × 3 unipotent upper triangular matrix group with

entries in A, that is :

H(3, A) =
{
s(a, b, c) =

 1 a c
0 1 b
0 0 1

 : a, b, c ∈ A
}

.

One has s(0, 0, 0) = I3. For s(a, b, c) and s(a′, b′, c′) inH(3, A), one sees that s(a, b, c)s(a′, b′, c′) =
s(a+ a′, b+ b′, c+ c′ + ab′) and s(a, b, c)−1 = s(−a,−b,−c+ ab).
The subset {s(a, 0, c)/a, c ∈ A}

[
resp.{s(0, b, c)/b, c ∈ A}

]
is readily seen to be a subgroup of

H(3, A) isomorphic to the additive group A × A
[
resp. isomorphic to the additive A × A and is a

normal subgroup
]

Also {s(a, 0, 0)/a,∈ A} is a subgroup isomorphic to the additive group A and
H(3, A) = {s(a, 0, 0)/a, c ∈ A}n{s(0, b, c)/b, c ∈ A}, with respect to the action s(a, 0, 0) ·s(0, b, c) =
s(0, b, c+ ab).

Proposition 1.1.
(i) One has s(a, b, c) = s(0, 0, c)s(0, b, 0)s(a, 0, 0).

(ii) The center of the group H(3, A) is equal to {s(0, 0, c)/c ∈ A}
(iii) s(a, 0, 0)s(0, 0, c) = s(a, 0, c) = s(0, 0, c)s(a, 0, 0) and

s(0, b, 0)s(0, 0, c) = s(0, b, c) = s(0, 0, c)s(0, b, 0)
(iv) s(a, b, c)s(a′, b′, c′)s(a, b, c)−1s(a′, b′, c′)−1 = s(0, 0, a′b− ab′)

Proof We only prove (ii). Assume that s(a, b, c) belongs to Z(H(3, A)) the center of H(3, A).
Then for any a′, b′, c′ ∈ A one has s(a+a′, b+ b′, c+ c′+ab′) = s(a+a′, b+ b′, c+ c′+a′b) =⇒ ab′ =
a′b,∀a′, b′ ∈ A. If a′ = 0 and b′ = 1, one has a = 0 and a′b = 0,∀a′ ∈ A which implies 1.b = 0. It
follows that the center Z(H(3, A)) is contained in {s(0, 0, c)/c ∈ A}. But this latest set is seen to
be included in the center. Whence the equality. �.

Let us notice that as a center, Z(H(3, A)) is a normal subgroup. One immediately sees that
the quotient group H(3, A)/Z(H(3, A)) is isomorphic to the product A×A of additve group.
One also deduces from (iv) that Z(H(3, A)) = {s(0, 0, c)/c ∈ A} is the group of commutators of
H(3, A).

For finite commutative unitary ring as the quotient Z/mZ and for finite fields the complex
linear representations of these groups have been studied by many authors (see for instance [6], [7],
[12])

In this talk, we consider a complete ultrametric valued field K, extension of the field of p-adic
numbers Qp and if D is a closed unitary subring of the valuation ring ΛK of K, we are interested
to the continuous linear representations of H(3,D) in appropriate function spaces.
The Schrödinger linear representations of the real Heisenberg group H(3,R) are obtained from their
restriction on the center of H(3,R) equal the additive group of R, restrictions which are the non



EIGHTH INTERNATIONAL CONFERENCE ON P -ADICMATHEMATICAL PHYSICS AND ITS APPLICATIONSP -ADICS, 2021 WEB CONFERENCEMAY 24, 2021 LINEAR REPRESENTATIONS OF P -ADIC HEISENBERG GROUPSIN SPACES OF ANALYTIC AND CONTINUOUS FUNCTIONS.3

trivial characters of R (see for instance [4]). Our aim is to develop such theory for the group H(3,D)
and then to find appropriate characters on the additive group of D.
Let us notice that H(3,D) is a closed subgroup of the topological group of the general linear group
GL(3,D) on which one considers the topology induced by the norm ‖s‖ = max1≤i,j≤3 |ai,j | on the
algebra of matrices Mat3(D).

Since Zp is contained in any closed unitary subring D of ΛK , one obtains a way to find charac-
ters of D that extend some of Zp. Let us remind the following lemma.

Lemma 1.2. Assume that K is a complete valued field extension of Qp.

The group Ẑp of the continuous characters of the additive group Zp in K? corresponds
bijectively to the principal unit group D−(1, 1) of ΛK .

Proof
For that, let us notice that if κ is a continuous character of Zp in K?, then |κ(1)| = 1 and

lim
n→+∞

κ(1)p
n

= lim
n→+∞

κ(pn) = κ(0) = 1. Which implies |κ(1)− 1| < 1,

Then there exists a positive integer m such that |κ(1)p
m −1| < 1. Which implies |κ(1)−1| < 1,

|κ(1)− 1| < 1, that is κ(1) belongs to D−(1, 1). and one obtains κ(a) =
∑
n≥0

(
a

n

)
(κ(1)− 1)

n
,∀a ∈

Zp.

Conversely let q ∈ D−(1, 1), one immediately sees that for any a ∈ Zp, the series qa =∑
n≥0

(
a

n

)
(q − 1)

n
converges uniformly with respect to a, hence defines a continuous function of

Zp in K and defines a continuous character.

Corollary 1.3.
Let K be a complete valued field extension of Qp.

Any continuous character κ of Zp in K is a strictly differentiable function
with derivative κ′(a) = log(κ(1))κ(a).

Proof
This follows from the fact that lim

n→+∞
n|κ(1) − 1|n = 0 . Condition which as well known (cf [9]

or [11] ) implies that the function κ with Mahler expansion κ(a) =
∑
n≥0

(
a

n

)
(κ(1)− 1)

n
is strictly

differentiable. A simple computation on the Mahler expansion gives the derivative. �

Application The case when |κ(1)− 1| < |p|
1
p−1

That is κ(1) = 1 + ϑ ∈ 1 + Ep, where Ep = {β ∈ K : |β| < |p|
1
p−1 } is the disc of convergence in

K of the exponential. One has log(1 + ϑ) = $ ∈ Ep, and 1 + ϑ = exp($). Then for any positive
integer m, κ(m) = (1 + ϑ)m = exp(m$). One obtains κ(a) = exp($a),∀a ∈ Zp. If $ = 0, one has
the trivial character κ0(a) = 1

Since |$| = | log(1 + θ)| = |θ| < |p|
1
p−1 , one has lim

n→+∞

|$n|
|n!|

= 0.
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One concludes that the character κ such that κ(a) = exp($a) = exp$(a) =
∑
n≥0

$n

n!
an is

an analytic function, where $ = log(κ(1)). Moreover one has κ′(a) = $κ(a).
In fact exp$ is a restricted power series with cœfficients in K .

For any closed subring D of ΛK , if t is an element of D, then |$t| ≤ |$| < |p|
1
p−1 .

It follows that κ extends to D by setting for t ∈ D : κ$(t) = exp($t) = exp$(t)
which defines a character of the additive group D into K?. In particular exp$ defines
an analytic character of the additive group of ΛK .

2. The case of a compact subring D of ΛK

Let K be a complete field extension of Qp and ΛK its ring of valuation. We
consider here a compact unitary subring D of ΛK , for instance the ring Zp of p-adic
integers or the valuation ring of any finite extension of Qp contained in K and vice
versa.
The compact ring D being totally discontinuous one sees that the Heisenberg group H(3,D)
is a topological, totally discontinuous, compact group, that is a profinite group. For
instance H(3,Zp) is a pro-p-group.

Let us fix 0 6= $ ∈ Ep, the open disc of convergence of the p-adic exponential function. We

have seen that the map exp$ : t −→ exp$(t) =
∑
n≥0

$n

n!
tn of ΛK in K? is a continuous character

(even analytic) of the additive group ΛK and by restriction a character of the additive group of any
of its closed unitary subring.
Consider for the compact ring D the K-vector space C(D, K) of continuous func-
tions f of D in K. With the supremum norm ‖f‖ and the usual product of functions
C(D, K) is a unitary Banach algebra.

Let s = s(a, b, c) be an element of H(3,D) and f an element of C(D, K).
Set π$s f(t) = exp$(bt+ c)f(t+ a).

It is clear that π$s f is a continuos function of D in K.

N.B.
If $ = 0, one has π0

s(a,b,c)f(t) = f(t+ a). Then π0
s(0,b,c)f(t) = f(t) ∀b, c ∈ D.

Lemma 2.1.
The map (s, f) −→ π$s f such that π$s f(t) = exp$(bt+ c)f(t+ a) defines

a continuous linear representation of H(3,D) in the Banach space C(D, K).

Proof
(1) Indeed, it is readily seen that for any s ∈ H(3,D), one has that π$s is a continuous linear

endomorphism of C(D,K) and each π$s is an isometry.
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For s(a, b, c), s(a′, b′, c′) ∈ H(3,D and f a continuous functions of D in K, It is a routine to
verify that π$s(a,b,c)s(a′,b′,c′)f(t) = π$s(a+a′,b+b′,c+c′+ab′)f(t) = pi$s(a,b,c) ◦ π

$
s(a′,b′,c′)f(t).

(2) Furthermore, |π$s(a,b,c)f(t)− π$s(a′,b′,c′)f(t)| ≤
≤ max(| exp$(bt+ c)− exp$(b′t+ c′)||f(t+ a)|, | exp$(b′t+ c′)||f(t+ a)− f(t+ a′)|) ≤
max(|$((b− b′)t+ (c− c′))|‖f‖, |f(t+ a)− f(t+ a′)|) ≤
max(max(|b− b′|, |c− c′|)‖f‖, |f(t+ a)− f(t+ a′)|).
Since D is a metric compact space, continuity of functions implies uniform continuity. Hence for
ε > 0, there exists ηε > 0 such that if |θ − θ′| < ηε then |f(θ) − f(θ′)| < ε. It follows that for
|a− a′| = |a+ t− (t+ a′)| < ηε, one has |f(t+ a)− f(t+ a′)| < ε,∀t ∈ D. According to the above
inequality, if ‖s(a, b, c)− s(a′, b′, c′)‖ ≤ min(ε/‖f‖, ηε), one sees that
|πs(a,b,c)f(t) − πs(a′,b′,c′)f(t)| < ε, ∀t ∈ D, which implies that ‖πs(a,b,c)f − πs(a′,b′,c′)f‖ < ε. It
follows that the representation π is continuous. �

The tangent operators

(a) $ 6= 0

By definition, one has πs(a,0,0)f(t) = f(t+ a) = τaf(t)
πs(0,b,0)f(t) = exp$(bt)f(t) and πs(0,0,c)f(t) = exp$(c)f(t).

(b)
Let us consider the quotients :

(i) ∆af(t) =
f(t+ a)− f(t)

a
, a 6= 0

(ii) Mbf(t) =
exp$(bt)f(t)− f(t)

b
=

exp$(bt)− 1

b
f(t), b 6= 0 and

(iii) ηcf(t) =
exp$(c)f(t)− f(t)

c
=
exp$(−c)− 1

c
f(t), c 6= 0.

(i)′ If a tends towards 0, since there exist continuous functions on D that

are not derivable, the limit lim
a→0

f(t+ a)− f(t)

a
does not always exists.

However this limit exists for (strictly) differentiable functions and defines an
unbounded linear operator of C(D,K) whose domain contains the space of strictly
differentiable functions of D in K.
But, on the other hand the following limits exist and are uniform limits

(ii)′ lim
b→0

Mbf(t) = lim
b→0

exp$(bt)− 1

b
f(t) = $tf(t)

(iii)′ lim
c→0

exp$(c)f(t)− f(t)

c
= lim
c→0

exp$(c)− 1

c
f(t) = $f(t).

We are ready for the statement of the following ultrametric counterpart of classical
Schrödinger representations.

Theorem 2.2. Assume that D is a compact unitary subring of the valuation
subring of K.
Consider $ a non zero element of Ep.
Then the continuous linear representation (H(3,D), π$, C(D, K))
is topologically irreducible
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Proof
Let W be a closed invariant linear subspace of C(D,K).

−(a)− One sees that W is stable by the quotient maps Mb and by passing to limit it is stable by
the $m(f) where m(f)(t) = tf(t). By linearity and density of the set of polynomial functions [ by
Stone-Weierstrass-Kaplansky theorem, see for instance [10]], one obtains that for any continuous
function g of D in K and any f ∈W, gf belongs to W . In other words W is an ideal of C(D,K).

−(b)−
Let f ∈ W, f 6= 0 and let us consider 0 < ε′ < ‖f‖, then there exist tε′ ∈ D such that

0 < ε = ‖f‖ − ε′ < |f(tε′)|. Therefore Oε = {t ∈ D/|f(t)| > ε} is an open and closed non

empty subset of D. Let hε be the function such that hε(t) =
1

f(t)
if t ∈ Oε and hε(t) = 0 oth-

erwise. It is a continuous function such that hεf = χOε , the characteristic function of Oε [cf.
[10], Proof of Theorem 6.27]. Since W is an ideal, χOε = hεf belongs to W . On the other hand

πs(−a,0,0)χOε = τ−aχOε = χa+Oε ∈W, ∀a ∈ D. One sees that D =
⋃
a∈D

(a+Oε).

Since D is compact, one has a finite covering D =
⋃

1≤j≤ν

(aj +Oε).

Applying the inclusion-exclusion formula for characteristic functions one sees that 1 = χD =

χ∪1≤1≤ν(ai+Oε) =

ν∑
j=1

χaj+Oε +

ν∑
k=2

(−1)k−1
∑

1≤j1<j2<···<jk≤ν

χaj1+Oε · · ·χajk+Oε belongs to the ideal

W , as any χaj+Oε does. Therefore W = C(D,K).
We have finished proving that the representation π$ is topologically irreducible. �

We have putted π$ the linear representation associated to $ ∈ Ep \ {0} such that
π$s(a,b,c)f(t) = exp$(bt+ c)f(t+ a).

Corollary 2.3.
(i) Let $1, $2 ∈ Ep \ {0}.

Then the representations π$1 and π$2 are equivalent if and only if $1 = $2

(ii) Let c ∈ D, then exp(c$) · id is an intertwining operator of the representa-
tion π$. If ϕ is an intertwining operator of the representation π$, then ϕ = ϕ(1)id,
with ϕ(1) a constant in K. (Schur Lemma)

Proof

(i) is easy
(ii) Let ϕ be an intertwining operator of the representation π$, that is π$s ◦ϕ = ϕ◦π$s , ∀s ∈

H(3,D). In particular π$s(0,b,0) ◦ ϕ(f) = exp$b ϕ(f) = ϕ(exp$2b f). Hence for b 6= 0, one has

Mbϕ(f) = ϕ(Mbf). When b tends towards 0, one has Mb(t) → $t. Hence $tϕ(f) = ϕ($tf) =⇒
tϕ(f) = ϕ(tf).
From what one deduces that ϕ(gf) = gϕ(f) =⇒ ϕ(g) = ϕ(1)g. That is ϕ = ϕ(1)id.
Moreover since τa ◦ ϕ = ϕ ◦ τa =⇒ τaϕ(f) = ϕ(τaf) = ϕ(1)τaf , one has τaϕ(1) = ϕ(1)τa1. = ϕ(1).
That is ϕ(1)(x + a) = ϕ(1)(x),∀a, x ∈ D. Hence ϕ(1)(a) = ϕ(1)(0),∀a ∈ D. That is ϕ(1) is a
constant function, element of the field K �
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Scholie
(α) The space C1(D, K) of strictly differentiable functions of D in K is a sub-

space of C(D, K) invariant by any representation π$. Which with its own topology
is topologically irreducible although it is a dense subspace of the space of continuous
functions. Any strictly differentiable function f has a derivative f ′ that is a contin-
uous function not necessary strictly differentiable. Then the operator of derivation
is an unbounded operator that domain contains C1(D, K) with values in C(D, K).

(β) The space A(D, K) of analytic functions of D in K is another subspace
of C(D, K) that is a non closed subspace invariant by π$. We will be concerned with
such representation in the sequel.

(γ) • The case when D = Zp can be of particular interest.
Indeed we have described all the continuous characters κ of Zp in K?. To any char-

acter κ ∈ Ẑp one can associate a continuous linear representation πκ of H(3,Zp) in
the space C(Zp, K) by setting for any continuous function and any s = s(a, b, c) ∈
H(3,Zp) : πκs f(t) = κ(bt+ c)f(t+ a). Unless κ(1) is a pν-root of unity in K, what is
said for the above representation associated to an analytic character remains mutatis
mutandis true.
• If κ(1) is a pν-root of unity, then the subspace of locally constant functions
C(Zp, K)p

νZp = {f : Zp −→ K / f(t + t′) = f(t),∀t′ ∈ pνZp} is invariant by πκ. On
can show that the restriction of πκ to this subspace is a finite dimensional irreducible
linear representation.

(δ) The one parameter subgroups associated to the
representation π$.

The representation π$ is not smooth.
However one has the following one parameter subgroups associated to π$.
That is group homomorphisms of D in the group Aut(C(D, K)) of the linear
automorphisms of the Banach space C(D, K).

(δ1) The first is defined by the map a −→ τa, which is not a smooth one
parameter group.

(δ2) The second is the map b −→ π$s(0,b,0). This one parameter group
is smooth and if one considers the linear operator m defined by setting
m(f)(t) = tf(t), one has for any element b ∈ D the linear automorphism

exp$b(m) = exp$(bm) =
∑
n≥0

$nbn

n!
mn of C(D, K) and one has exp$(bm)f =

= exp$b ·f for any continuous function f of D in K
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(δ3) The third is given by the smooth character exp$ : c −→ π$s(0,0,c). �

Notice that one has τa ◦m−m ◦ τa = aτa,∀a ∈ D.

3. Analytic representations

In this section we consider a non necessary compact, closed unitary subring D of the valuation
ring ΛK = Λ of the complete valued field K extension of the field of p-adic numbers Qp. We have
noticed that considering the space of analytic fucntions A(D,K), if exp$ is an analytic character
of Zp, then one can defines a linear representation U = U$ of the Heisenberg group H(3,D) in
A(D,K) such that if s = s(a, b, c) is an element of H(3,D) and f an analytic function D in K,
then one has Us(a,b,c)f(t) = exp$(bt + c)f(t + a). The space A(D,K) is complete with respect
to the Gauss norm, but if the field K is of discrete valuation the Gauss norm differs from the
uniform norm, we consider A(D,K) rather as the Tate algebra in one indeterminate, that is the
subalgebra K < z > of the algebra of formal power series whose elements are the formal power

series f(z) =
∑
n≥0

anz
n such that lim

n→+∞
|an| = 0. With the Gauss norm ‖f‖ = sup

n≥0
|an|, the algebra

K < z > becomes an ultrametric unitary algebra with a multiplicative norm. The elements of
K < z > are also called the restricted power series with cœfficients in K.

3.1. Substitution in restricted power series.

Let K[[X]] be the ring of formal power series with cœfficients in K. For f =
∑
n≥0

anX
n ∈ K[[X]],

one has in K[[X,Y ]] = K[[X]][[Y ]] the formal Taylor expansion f(X + Y ) =
∑
n≥0

an(X + Y )n =∑
j≥0

f [j](X)Y j :

where f [j](X) =
∑
i≥0

(
i+ j

i

)
ai+jX

i. One has f [1](X) =
∑
i≥0

(i + 1)ai+1X
i = f ′(X) the formal de-

rivative of f and if the field K is of characteristic 0, one sees that f [j](X) =
f (j)(X)

j!
, where f (j) is

the jth-derivative of f .

Now let f =
∑
n≥0

anz
n ∈ K < z >. For any integer j , one sees that f [j](z) =

∑
i≥0

(
i+ j

i

)
ai+jz

i

belongs to K < z >, with ‖f [j]‖ = sup
i≥0

∣∣∣∣(i+ j

i

)∣∣∣∣ |ai+j | ≤ sup
i≥0
|ai+j |.

Since lim
j→+∞

|aj | = 0, one has lim
j→+∞

sup
i≥0
|ai+j | = lim sup

j→+∞
|aj | = 0 which implies lim

j→+∞
‖f [j]‖ = 0.

Let h(z) =
∑
n≥0

bnz
n = b0 + g(z) ∈ K < z > be such that ‖h‖ = sup

n≥0
|bn| =

max |b0|, ‖g‖) ≤ 1.
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For the integers i, j ≥ 0, one has
∣∣(i+j

i

)∣∣ |ai+j |‖gi‖ ≤ |ai+j |‖g‖i ≤ |ai+j |.
Hence lim

i→+∞

∣∣∣∣(i+ j

i

)∣∣∣∣ |ai+j |‖gi‖ = 0,∀j ≥ 0 fixed, and one has the convergent sum of restricted

power series
∑
i≥0

(
i+ j

i

)
ai+jg(z)i,∀j ≥ 0, that is for any integer j ≥ 0 the power series

∑
i≥0

(
i+ j

i

)
ai+jg(z)i belongs to K < z > .

Since g(0) = 0, one has by substitution of formal power series that f [j]◦g(z) =
∑
i≥0

(
i+ j

i

)
ai+jg(z)i

belongs to K < z >.

Moreover ‖f [j] ◦ g‖ ≤ sup
i≥0

∣∣∣∣(i+ j

i

)∣∣∣∣ |ai+j |‖gi‖ ≤ sup
i≥0

∣∣∣∣(i+ j

i

)∣∣∣∣ |ai+j | = ‖f [j]‖,∀j ≥ 0.

On the other hand, since |b0| ≤ 1, one has |b0|j‖f [j] ◦ g‖ ≤ ‖f [j]‖. One then deduces that

lim
j≥0
|b0|j‖f [j] ◦ g‖ = 0 and one obtains the convergent sum of restricted power series∑

j≥0

bj0f
[j] ◦ g(z) = f(b0 + g(z)) = f(h(z)), an element of K < z >.

In particular for α and β elements of the valuation ring of K; one has an element of K < z >

defined by setting f(αz + β) =
∑
j≥0

βjf [j](αz).

3.2. Linear representations of H(3,D) in K < z >.

For α, β ∈ D, we have seen that one can substitute αz + β in f obtaining again
an element of K < z > such that

f(αz + β) =
∑
j≥0

βjf [j](αz) and f [j](αz) =
∑
i≥0

(
i+ j

i

)
ai+jα

izi.

Let us remind that if |$| < |p|
1
p−1 , then the series exp$(z) =

∑
n≥0

$n

n!
zn, is a non

constant restricted power series for $ 6= 0, that is a non constant element of the

Tate algebra K < z > . Moreover ‖ exp$ ‖ = sup
n≥0

|$|n

|n!|
= 1.

Now, let s = s(a, b, c) be an element of H(3,D), the Heisenberg group with en-
tries in the closed unitary subring D of the valuation Λ of the complete valued field
K extension of Qp.
For f ∈ K < z >, let us set U$

s(a,b,c)f(z) = exp$(bz + c)f(z + a).
One obtains by the way an element U$

s(a,b,c)f of K < z >.
It is obvious that U$

s(a,b,c) is a continuous linear endomorphism of K < z >.
One verifies as already done above that U$

s(a,b,c)s(a′,b′,c′) = U$
s(a,b,c) ◦ U$

s(a′,b′,c′).
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Hence the map U$ : H(3,D) −→ L(K < z >) such that
U$
s(a,b,c)f(z) = exp$(bz + c)f(z + a) is a linear representation.

Since exp$(bz+c) =
∑
n≥0

$n

n!
(bz+c)n, with ‖(bz+c)n‖ = ‖bz+c‖n = max(|b|, |c|)n ≤

1, one has
|$|n

|n!|
‖(bz + c)n‖ ≤ |$|

n

|n!|
< |p|n(ν− 1

p−1
) < 1,∀n ≥ 1 and then ‖ exp$(bz +

c)‖ = 1.

On the other hand one has U$
s(a,0,0)f(z) = f(z + a) = τaf(z) =

∑
j≥0

ajf [j](z),

then ‖U$
s(a,0,0)f‖ ≤ sup

j≥0
|a|j‖f [j]‖ ≤ sup

j≥0
‖f [j]‖ ≤ ‖f‖. In the same way, one has

‖U$
s(−a,0,0)f‖ ≤ ‖f‖. One then sees that ‖U$

s(a,0,0)f‖ = ‖f‖,∀a ∈ D.

It follows that ‖U$
s(a,b,c)f‖ = ‖ exp$(bz + c)‖‖U$

s(a,0,0)f‖ = ‖f‖.
The representation is then said to be unitary.

Lemma 3.1. The linear representation (H(3,D), U$, K < z >) is continuous.

Proof

For a ∈ D and f ∈ K < z >, one has τaf =
∑
j≥0

ajf [j]. One verifies that

‖τaf − τa′f‖ ≤ sup
j≥1
|aj − a′j|‖f [j]‖ ≤ |a− a′| sup

j≥1
‖f [j]‖ ≤ |a− a′|‖f‖.

On the other hand ‖ exp$(bz+c)−exp$(b′z+c′)‖ ≤ sup
n≥1

∣∣∣∣$n

n!

∣∣∣∣ ‖(bz + c)n − (b′z + c′)n‖

≤ sup
n≥1

∣∣∣∣$n

n!

∣∣∣∣ ·max(|b− b′|, |c− c′|) ≤ max(|b− b′|, |c− c′|)

Let s(a, b, c) and s(a′, b′, c′) be two elements of the Heisenberg group, one obtains
‖U$

s(a,b,c)f − U$
s(a′,b′,c′)f‖ ≤

≤ max(‖ exp$(bz + c)‖‖τaf − τa′f‖, ‖ exp$(bz + c)− exp$(b′z + c′)‖‖τa′f‖) =
= max(‖τaf − τa′f‖, ‖ exp$(bz + c)− exp$(b′z + c′)‖)‖f‖
Summarizing we have ‖U$

s(a,b,c)f − U$
s(a′,b′,c′)f‖ ≤ max(|a− a′|, |b− b′|, |c− c′|)‖f‖ =

= ‖s(a, b, c) − s(a′, b′, c′)‖‖f‖ and the map s(a, b, c) −→ U$
s(a,b,c)f is continuous.

�
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The linear representation U$ is smooth

By definition, one has U$
s(a,0,0)f(z) = f(z + a) = τaf(z)

U$
s(0,b,0)f(z) = exp$(bz)f(z) and U$

s(0,0,c)f(z) = exp$(c)f(z).
As previously, let us consider in K < z >, for a 6= 0, b 6= 0 and c 6= 0, the quotients :

(i) ∆a(f) =
τaf − f

a

(ii) Mb(f) =
exp$(bz)f − f

b
=

exp$(bz)− 1

b
f and

(iii) ηc(f) =
exp$(c)f − f

c
=
exp$(c)− 1

c
f .

Since τaf =
∑
j≥0

ajf [j] = f + af ′ +
∑
j≥2

ajf [j], one immediately sees that

∆a(f) = f ′ + a
∑
j≥2

aj−2f [j] and ‖∆a(f)− f ′‖ ≤ |a|‖f‖ =⇒ sup
f 6=0

‖∆a(f)− f ′‖
‖f‖

≤ |a|.

It follows that in L(K < z >) one has:
lim
a→0

∆a = ∂, where ∂(f) = f ′. Furthermore ‖∂‖ = 1. (i)′

In the same way, one obtainsMb(f) =
exp$(bz)f − f

b
= $z·f+b

(∑
n≥2

$n

n!
bn−2zn

)
f.

with ‖Mb(f) − $z · f‖ < |b|‖f‖, and lim
b→0

sup
‖f‖6=0

‖Mb(f)−$z · f‖
‖f‖

= 0. That is, in

L(K < z >), one has:
lim
b→0

Mb = $mz where mz(f) = zf and ‖mz(f)‖ = ‖f‖ (ii)′ .

The formulas (i)’ and (ii)’ are used in the proof of the forthcoming theorem.

Obviously ηc(f) =
exp$(c)f − f

c
= $f + c

(∑
n≥2

$n

n!
cn−2

)
f.

Then ‖ηc(f)−$f‖ ≤ |c| sup
n≥2

|$n|
|n!|
‖f‖ < |c|‖f‖ and one obtains lim

c→0
ηc = $·id. (iii)′

Theorem 3.2. Assume that 0 6= $ ∈ Ep.
Then the continuous linear representation (H(3,D), U$, K < z >)
is topologically irreducible.
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Proof
Let W be a closed linear subspace of K < z > invariant by the representation

U$.
(1) Let f be an element of W , for any a ∈ D, one has τaf = Us(a,0,0)f ∈ W .

Hence ∆a(f) =
τaf − f

a
belongs to W .

Since W is a closed linear subspace, one sees that lim
a→0

∆af = f ′ = ∂(f) also belongs

to W .
Hence W is stable by the derivative operator ∂ and for any integer n ≥ 0, one has
∂◦n(W ) ⊂ W .

(2) In the same way, W is stable by Mb, ∀b ∈ D and then it is stable by
the limit lim

b−→0
Mb(f) = $mz(f), where mz(f) = zf . Hence znW ⊂ W,∀n ≥ 0.

Therefore by linearity and continuity, for any g ∈ K < z > and for any f ∈ W , one
has gf ∈ W . That is W is an ideal of K < z >.

(3) Assume that W 6= 0. Let f ∈ W, f 6= 0. According to Weierstrass
preparation theorem (see for instance [5] ) there exists a polynomial P and a re-
stricted power series g such that f = Pg, with ‖g − 1‖ < 1, therefore g is invertible
in K < z >. It follows that P = g−1f belongs to W .
Let ν be the degree of the polynomial P , then ∂◦νP = ν!aν ∈ W and the formal
power series 1 belongs to W . It follows that the nonzero ideal W is equal to K < z >.
Therefore the linear representation U$ is topologically irreducible. �

Proposition 3.3.
The algebra EndU$(K < z >) of the continuous linear intertwining operators

of the representation U$ is equal to K.id, where id is the identity map of K < z >.
( Schur lemma)

Proof
Let ϕ be a continuous linear endomorphism of K < z > such that
ϕ ◦ U$

s(a,b,c) = U$
s(a,b,c) ◦ ϕ, ∀s(a, b, c) ∈ H(3,D).

One immediately sees, on one hand that ϕ ◦∆a = ∆a ◦ϕ,∀a ∈ D =⇒ ϕ ◦ ∂ = ∂ ◦ϕ.
On the other hand ϕ ◦Mb = Mb ◦ ϕ, ∀b ∈ D =⇒ ϕ ◦mz = mz ◦ ϕ.
Hence for f ∈ K < z >, one has ϕ(mz(f)) = ϕ(zf) = mz(ϕ(f)) = zϕ(f) and
ϕ(znf) = znϕ(f). . As above by linearity and continuity, ϕ(gf) = gϕ(f),∀g ∈ K <
z >. In particular ϕ(g) = ϕ(1)g,∀g ∈ K < z > .

Setting ϕ(1) =
∑
n≥0

α0,nz
n, one obtains ϕ ◦ ∂(1) = ϕ(0) = 0 = ∂ ◦ ϕ(1) =
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=
∑
≥0

(n+ 1)α0,n+1z
n =⇒ α0,n+1 = 0,∀n ≥ 0, and ϕ(1) = a0,0 ∈ K.

Hence ϕ = a0,0 · id.

Remark 3.4. The representations U$1 and U$2 are equivalent if and only if
$1 = $2.

3.3. The completion of the Weyl algebra A1(K).

Remarks
−(i)− One has three one parameter groups attached to U$.

Namely the group homomorphisms of D into AutK(K < z >) defined by :
-(1)- a→ τa = exp(a∂) (strong convergence)
-(2)- b → exp$(bmz) = Mexp$(bz), the operators of multiplication by the re-

stricted formal power series exp$(bz).
-(3)- c → λexp$(c), where λexp$(c) is the linear automorphism of K < z > of

multiplication by the scalar exp$(c).

−(ii)− Heisenberg commutation relation:
∂ ◦mz = mz ◦ ∂ + id

Let H = K.∂ +K.mz +K.id ⊂ L(K < z >).
If one puts for u, v ∈ L(K < z >) the bracket [u, v] = u ◦ v − v ◦ u one obtains,

as for any associative algebra a Lie algebra structure on L(K < z >).
Since [∂,mz] = id, it is readily seen that H = K.∂ +K.mz +K.id is a three

dimensional Lie subalgebra of L(K < z >) isomorphic to the K-Heisenberg Lie al-
gebra of dimension 3.

−(iii)− Matrix representation of ∂ and mz

Let us set ψn = zn. Then (ψn)n≥0 is an orthonormal basis of K < z >.
Let ψ?n ∈ L(K < z >,K) be the dual basis element such that < ψ?n, ψm >= δn,m
One has ∂(ψn) = nψn−1 = n < ψ?n, ψn > ψn−1 = nψ?n ⊗ ψn−1(ψn).

That is ∂ =
∑
n≥0

nψ?n ⊗ ψn−1 =
∑
n≥0

(n+ 1)ψ?n+1 ⊗ ψn.

Let us consider the canonical scalar product on K < z > such that for

f =
∑
n≥0

anψn and g =
∑
n≥0

bnψn, one has < f, g >=
∑
n≥0

anbn.

Since ∂ =
∑
`,j

α`,jψ
?
j ⊗ ψ`, with α`,j = 0 if (`, j) 6∈ {n + 1, n} and αn,n+1 = n + 1,

for ` fixed α`,j = 0 for j 6= `+ 1; hence lim
j→+∞

α`,j = 0 and with respect to the scalar
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product < > the operator ∂ has an adjoint ∂? = t∂ ∈ L(K < z >) [ cf [1]] with
t∂ =

∑
`,j

αj,`ψ
?
j ⊗ ψ` =

∑
n≥0

(n+ 1)ψ?n ⊗ ψn+1.

That is t∂(ψn) = (n+ 1)ψn+1

In the same way, one has mz(ψn) = ψn+1 = ψ?n(ψn)ψn+1 = ψ?n ⊗ ψn+1(ψn).

Hence mz =
∑
n≥0

ψ?n ⊗ ψn+1.

One sees that mz has an adjoint m?
z = tmz =

∑
n≥0

ψ?n+1 ⊗ ψn ∈ L(K < z >),

that is tmz(ψn) = ψn−1, n ≥ 1 and tmz(ψ0) = 0 �.

3.4. The Weyl algebra A1(K).

To go straight, we shall define, following the algebraic setting in [3], the Weyl
algebra A1(K) to be the subalgebra of L(K < z >) generated by {mz, ∂}.
In fact it is the algebra of differential operators of the algebra of polynomials K[z].
On the other hand, the abstract Weyl algebra is the quotient of the free algebra in
two variables K{x, y} by the two-sided ideal I generated by yx− xy − 1. And if K
is of characteristic 0, then sending x on mz and y on ∂ one obtains an isomorphism
of K{x, y}/I onto A1(K).

Any u ∈ A1(K) can be written in the unique form u =
∑
i,j

αi,jm
i
z∂

j (see for instance

loc. cit.). In the sequel, we identify zi with the operator mi
z and then write also

u =
∑
i,j

αi,jz
i∂j.

Let us set δ[j] =
∂j

j!
. One verifies that δ[i]δ[j] =

(
i+j
i

)
δ[i+j]. One says that (δ[j])i≥0 is an

exponential sequence. For the integers j ≥ 0 and n ≥ 0, one has ∂j(zn) = j!
(
n
j

)
zn−j

and δ[j](zn) =
(
n
j

)
zn−j. Hence ‖δ[j](zn)‖ =

∣∣∣(nj)∣∣∣ .
One sees that ‖δ[j]‖ = supn≥j

∣∣∣(nj)∣∣∣ = 1 and ‖∂j‖ = |j!| .

The following statements are counterparts of results obtained some years ago by
the first author and Fana Tangara ([2]).

Lemma 3.5. The family
(
mi
zδ

[j]
)

(i,j)∈N×N is an orthonormal family of A1(K)

for the norm of bounded linear operators.
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Proof
-(a)-

Let f ∈ K < z >, for i ≥ 0, j ≥ 0, one has mi
z ◦ δ[j](f) = zif [j], then

‖mi
z ◦ δ[j](f)‖ = ‖ziδ[j](f)‖ = ‖δ[j](f)‖ ≤ ‖f‖ =⇒ ‖mi

z ◦ δ[j]‖ = ‖δ[j]‖ = 1.
-(b)-

Let u =
∑
i,j

αi,jm
i
z∂

j =
∑
i,j

βi,jz
iδ[j] ∈ A1(K) one has ‖u‖ ≤ max

i,j
|βi,j|‖mi

zδ
[j]‖ =

max
i,j
|βi,j|. On the other hand u(z0) = u(1) =

∑
i≥0

βi,0z
i, then ‖u(z0)‖ = sup

i≥0
|βi,0| ≤

‖u‖ By induction, one proves that max
i≥0
|βi,`| ≤ ‖u‖,∀` ≥ 0. One concludes that

‖u‖ = max
i,`
|βi,`|. That means that

(
mi
zδ

[j]
)
i,j

is an orthonormal family of A1(K).

�

Proposition 3.6.
Let Ã1(K) be the closure of the Weyl algebra A1(K) in the Banach algebra

L(K < z >).

Then any element u ∈ Ã1(K) can be written in the form of a unique summable

family u =
∑
i,j

βi,jm
i
zδ

[j].

Moreover, one has ‖u‖ = sup
i,j
|βi,j|, that is (mi

zδ
[j])i,j is an orthonormal basis of

Ã1(K).

Proof
This is an easy consequence of the fact that the linear basis

(
mi
zδ

[j]
)

(i,j)∈N×N of A1(K)

is an orthonormal family in the Banach space L(K < z >). �

Proposition 3.7.
For u ∈ Ã1(K) and f ∈ K < z > let us set u.f = u(f).

Then K < z > is a left Banach module over Ã1(K) and is topologically irreducible.

Proof
It runs as the proof of Theorem 3.2.

Proposition 3.8.
Any element u ∈ Ã1(K) can be written in the unique form of convergent series

u =
∑
j≥0

fj
j!
∂j =

∑
j≥0

fjδ
[j], with fj ∈ K < z >, lim

j→+∞
‖fj‖ = 0 and

‖u‖ = sup
j≥0
‖fj‖
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Proof
Applying Proposition 3.5 to any generalized differential operator u ∈ Ã1(K), one

has the summable sum u =
∑
i,j

βi,jm
i
zδ

[j]. This means that limi,j |βi,j| = 0 along

the Fréchet filter on N × N. Or equivalently for any j ≥ 0, lim
i−→+∞

|βi,j| = 0 and

lim
j−→+∞

sup
i≥0
|βi,j| = 0.

Hence one has u =
∑
j≥0

∑
i≥0

βi,jm
i
z ◦ δ[j] =

∑
j≥0

mfj ◦ δ[j] =
∑
j≥0

fjδ
[j], where fj =∑

i≥0

βi,jz
i ∈ K < z >, with ‖fj‖ = sup

i≥0
|βi,j|.

And one concludes that sup
j≥0
‖fj‖ = ‖u‖. �

From the relation δ[j]g =
∑
s+t=j

δ[s](g)δ[t] and the expansion in Proposition 3.8, one

gets a formula for the expansion of the product of two elements of Ã1(K).

With the above notations if u =
∑
j≥0

fj
j!
∂j, one has ‖u‖ = sup

j≥0
‖fj‖ = ‖fj0‖. If

j0 is the greatest integer such that ‖u‖ = ‖fj0‖ then ‖fj‖ = sup
i≥0
|βi,j| < ‖fj0‖. On

the other hand let i0 be the greatest integer j ≥ 0 such that ‖fj0‖ = |βi0,j0|, one has
|βi,j| < βi0,j0|,∀i ≥,∀j > j0 and ‖u‖ = |βi0,j0|.
Considering the element v =

∑
i≤i0,j≤j0

βi,jz
iδ[j] of A1(K),

one has ‖u − v‖ = | supi>i0,j>j0 βi,j| < ‖u‖, hence ‖u‖ = ‖v‖. One says as for Tate
algebra that v is a distinguished differential operator of degree (i0, j0).
With this in hand, one has algorithm of division by distinguished differential opera-
tors. As a consequence, following [8] one has

Theorem 3.9.
The complete Weyl algebra Ã1(K) is a simple,
left noetherian ring with center K

Proof
For a proof, one can proceed as in [8]

THANK YOU
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