Eighth International Conference on *p*-Adic Mathematical Physics and its Applications *p*-adics, 2021 WEB CONFERENCE May 24, 2021

Linear representations of *p*-adic Heisenberg groups in spaces of analytic and continuous functions.

Bertin Diarra¹ and Tongobé Mounkoro²

ABSTRACT. Let K be a complete valued field extension of the field of p-adic numbers \mathbb{Q}_p . Let \mathcal{D} be a closed unitary subring of the valuation ring Λ_K of K. Let $\mathcal{H}(3, \mathcal{D})$ be the 3-dimensional Heisenberg group with entries in \mathcal{D} . We shall give continuous linear representations of $\mathcal{H}(3, \mathcal{D})$ in the space K < z > of restricted power series with coefficients in K (= the Tate algebra in one variable, i.e. the space of analytic functions on Λ_K), analogous to Schrödinger representations of the classical Heisenberg group. On the other hand, assuming that \mathcal{D} is compact, we shall obtain by the same way continuous linear representations of the profinite group $\mathcal{H}(3, \mathcal{D})$ in the space of continuous functions $\mathcal{C}(\mathcal{D}, K)$, other analogues of Schrödinger representations. These representations are topologically irreducible. From the first representations, one obtains position and momentum bounded operators satisfying Heisenberg commutation relation and the Weyl algebra $A_1(K)$ as subalgebra of the algebra of bounded linear operators of K < z >. The closure $\widetilde{A}_1(K)$ of $A_1(K)$ is described.

Laboratoire de Mathématiques, UMR 6620 CNRS
 Campus Universitaire des Cézeaux, 3 place Vasarely,
 63178 Aubière Cedex, France
 e-mail : Bertin Diarra

bertin.diarra@math.univ-bpclermont.fr>

2 USTTB

Faculté des Sciences et Techniques (FST), DER de Mathématiques et Informatique, BP : E 3206 Bamako, Mali e-mail : *Tongobé Mounkoro <tongobemounkoro@yahoo.fr*>

1. Introduction

Let A be a commutative unitary ring. By definition the Heisenberg group on A of order (dimension) 3 is the 3×3 unipotent upper triangular matrix group with entries in A, that is :

$$\mathcal{H}(3,A) = \left\{ s(a,b,c) = \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} : a,b,c \in A \right\}.$$

One has $s(0,0,0) = I_3$. For s(a,b,c) and s(a',b',c') in $\mathcal{H}(3,A)$, one sees that s(a,b,c)s(a',b',c') = s(a+a',b+b',c+c'+ab') and $s(a,b,c)^{-1} = s(-a,-b,-c+ab)$.

The subset $\{s(a, 0, c)/a, c \in A\}$ [resp. $\{s(0, b, c)/b, c \in A\}$] is readily seen to be a subgroup of $\mathcal{H}(3, A)$ isomorphic to the additive group $A \times A$ [resp. isomorphic to the additive $A \times A$ and is a normal subgroup] Also $\{s(a, 0, 0)/a, \in A\}$ is a subgroup isomorphic to the additive group A and $\mathcal{H}(3, A) = \{s(a, 0, 0)/a, c \in A\} \ltimes \{s(0, b, c)/b, c \in A\}$, with respect to the action $s(a, 0, 0) \cdot s(0, b, c) = s(0, b, c + ab)$.

PROPOSITION 1.1.

(i) One has s(a, b, c) = s(0, 0, c)s(0, b, 0)s(a, 0, 0). (ii) The center of the group $\mathcal{H}(3, A)$ is equal to $\{s(0, 0, c)/c \in A\}$ (iii) s(a, 0, 0)s(0, 0, c) = s(a, 0, c) = s(0, 0, c)s(a, 0, 0) and s(0, b, 0)s(0, 0, c) = s(0, b, c) = s(0, 0, c)s(0, b, 0)(iv) $s(a, b, c)s(a', b', c')s(a, b, c)^{-1}s(a', b', c')^{-1} = s(0, 0, a'b - ab')$

Proof We only prove (*ii*). Assume that s(a, b, c) belongs to $Z(\mathcal{H}(3, A))$ the center of $\mathcal{H}(3, A)$. Then for any $a', b', c' \in A$ one has $s(a+a', b+b', c+c'+ab') = s(a+a', b+b', c+c'+a'b) \Longrightarrow ab' = a'b, \forall a', b' \in A$. If a' = 0 and b' = 1, one has a = 0 and $a'b = 0, \forall a' \in A$ which implies 1.b = 0. It follows that the center $Z(\mathcal{H}(3, A))$ is contained in $\{s(0, 0, c)/c \in A\}$. But this latest set is seen to be included in the center. Whence the equality. \Box .

Let us notice that as a center, $Z(\mathcal{H}(3, A))$ is a normal subgroup. One immediately sees that the quotient group $\mathcal{H}(3, A)/Z(\mathcal{H}(3, A))$ is isomorphic to the product $A \times A$ of additive group. One also deduces from (iv) that $Z(\mathcal{H}(3, A)) = \{s(0, 0, c)/c \in A\}$ is the group of commutators of $\mathcal{H}(3, A)$.

For finite commutative unitary ring as the quotient $\mathbb{Z}/m\mathbb{Z}$ and for finite fields the complex linear representations of these groups have been studied by many authors (see for instance [6], [7], [12])

In this talk, we consider a complete ultrametric valued field K, extension of the field of p-adic numbers \mathbb{Q}_p and if \mathcal{D} is a closed unitary subring of the valuation ring Λ_K of K, we are interested to the continuous linear representations of $\mathcal{H}(3, \mathcal{D})$ in appropriate function spaces.

The Schrödinger linear representations of the real Heisenberg group $\mathcal{H}(3,\mathbb{R})$ are obtained from their restriction on the center of $\mathcal{H}(3,\mathbb{R})$ equal the additive group of \mathbb{R} , restrictions which are the non

trivial characters of \mathbb{R} (see for instance [4]). Our aim is to develop such theory for the group $\mathcal{H}(3, \mathcal{D})$ and then to find appropriate characters on the additive group of \mathcal{D} .

Let us notice that $\mathcal{H}(3, \mathcal{D})$ is a closed subgroup of the topological group of the general linear group $GL(3, \mathcal{D})$ on which one considers the topology induced by the norm $||s|| = \max_{1 \le i,j \le 3} |a_{i,j}|$ on the algebra of matrices $\operatorname{Mat}_3(\mathcal{D})$.

Since \mathbb{Z}_p is contained in any closed unitary subring \mathcal{D} of Λ_K , one obtains a way to find characters of \mathcal{D} that extend some of \mathbb{Z}_p . Let us remind the following lemma.

LEMMA 1.2. Assume that K is a complete valued field extension of \mathbb{Q}_p .

The group \mathbb{Z}_p of the continuous characters of the additive group Z_p in K^* corresponds bijectively to the principal unit group $D^-(1,1)$ of Λ_K .

Proof

For that, let us notice that if κ is a continuous character of \mathbb{Z}_p in K^* , then $|\kappa(1)| = 1$ and $\lim_{n \to +\infty} \kappa(1)^{p^n} = \lim_{n \to +\infty} \kappa(p^n) = \kappa(0) = 1$. Which implies $|\kappa(1) - 1| < 1$,

Then there exists a positive integer m such that $|\kappa(1)^{p^m} - 1| < 1$. Which implies $|\kappa(1) - 1| < 1$, $|\kappa(1) - 1| < 1$, that is $\kappa(1)$ belongs to $D^-(1, 1)$. and one obtains $\kappa(a) = \sum_{n \ge 0} {a \choose n} (\kappa(1) - 1)^n$, $\forall a \in \mathbb{Z}$.

 $\mathbb{Z}_p.$

Conversely let $q \in D^{-}(1,1)$, one immediately sees that for any $a \in \mathbb{Z}_p$, the series $q^a = \sum_{n\geq 0} {a \choose n} (q-1)^n$ converges uniformly with respect to a, hence defines a continuous function of \mathbb{Z}_p in K and defines a continuous character.

Corollary 1.3.

Let K be a complete valued field extension of \mathbb{Q}_p . Any continuous character κ of \mathbb{Z}_p in K is a strictly differentiable function with derivative $\kappa'(a) = \log(\kappa(1))\kappa(a)$.

Proof

This follows from the fact that $\lim_{n \to +\infty} n |\kappa(1) - 1|^n = 0$. Condition which as well known (cf [9] or [11]) implies that the function κ with Mahler expansion $\kappa(a) = \sum_{n \ge 0} {\binom{a}{n}} (\kappa(1) - 1)^n$ is strictly differentiable. A simple computation on the Mahler expansion gives the derivative. \Box

Application The case when $|\kappa(1) - 1| < |p|^{\frac{1}{p-1}}$

That is $\kappa(1) = 1 + \vartheta \in 1 + E_p$, where $E_p = \{\beta \in K : |\beta| < |p|^{\frac{1}{p-1}}\}$ is the disc of convergence in K of the exponential. One has $\log(1 + \vartheta) = \varpi \in E_p$, and $1 + \vartheta = \exp(\varpi)$. Then for any positive integer m, $\kappa(m) = (1 + \vartheta)^m = \exp(m\varpi)$. One obtains $\kappa(a) = \exp(\varpi a), \forall a \in \mathbb{Z}_p$. If $\varpi = 0$, one has the trivial character $\kappa_0(a) = 1$

Since $|\varpi| = |\log(1+\theta)| = |\theta| < |p|^{\frac{1}{p-1}}$, one has $\lim_{n \to +\infty} \frac{|\varpi^n|}{|n!|} = 0$.

One concludes that the character κ such that $\kappa(a) = \exp(\varpi a) = \exp_{\varpi}(a) = \sum_{n>0} \frac{\varpi^n}{n!} a^n$ is an analytic function, where $\varpi = \log(\kappa(1))$. Moreover one has $\kappa'(a) = \varpi \kappa(a)$.

In fact \exp_{ϖ} is a restricted power series with coefficients in K.

For any closed subring \mathcal{D} of Λ_K , if t is an element of \mathcal{D} , then $|\varpi t| \leq |\varpi| < |p|^{\frac{1}{p-1}}$. It follows that κ extends to \mathcal{D} by setting for $t \in \mathcal{D}$: $\kappa_{\varpi}(t) = \exp(\varpi t) = \exp_{\varpi}(t)$ which defines a character of the additive group \mathcal{D} into K^* . In particular \exp_{ϖ} defines an analytic character of the additive group of Λ_K .

2. The case of a compact subring \mathcal{D} of Λ_K

Let K be a complete field extension of \mathbb{Q}_p and Λ_K its ring of valuation. We consider here a **compact** unitary subring \mathcal{D} of Λ_K , for instance the ring \mathbb{Z}_p of *p*-adic integers or the valuation ring of any finite extension of \mathbb{Q}_p contained in K and vice versa.

The compact ring \mathcal{D} being totally discontinuous one sees that the *Heisenberg group* $\mathcal{H}(3, \mathcal{D})$ is a topological, totally discontinuous, compact group, that is a profinite group. For instance $\mathcal{H}(3,\mathbb{Z}_p)$ is a pro-p-group.

Let us fix $0 \neq \varpi \in E_p$, the open disc of convergence of the *p*-adic exponential function. We have seen that the map $\exp_{\varpi} : t \longrightarrow exp_{\varpi}(t) = \sum_{n \ge 0} \frac{\varpi^n}{n!} t^n$ of Λ_K in K^* is a continuous character (even analytic) of the relative

(even analytic) of the additive group Λ_K and by restriction a character of the additive group of any of its closed unitary subring.

Consider for the compact ring \mathcal{D} the K-vector space $\mathcal{C}(\mathcal{D}, K)$ of continuous functions f of \mathcal{D} in K. With the supremum norm ||f|| and the usual product of functions $\mathcal{C}(\mathcal{D}, K)$ is a unitary Banach algebra.

Let s = s(a, b, c) be an element of $\mathcal{H}(3, \mathcal{D})$ and f an element of $\mathcal{C}(\mathcal{D}, K)$. Set $\pi_s^{\varpi} f(t) = \exp_{\varpi}(bt+c)f(t+a)$. It is clear that $\pi_s^{\varpi} f$ is a continuos function of \mathcal{D} in K.

N.B.

If $\varpi = 0$, one has $\pi^0_{s(a,b,c)}f(t) = f(t+a)$. Then $\pi^0_{s(0,b,c)}f(t) = f(t) \ \forall b, c \in \mathcal{D}$.

Lemma 2.1.

The map $(s, f) \longrightarrow \pi_s^{\varpi} f$ such that $\pi_s^{\varpi} f(t) = \exp_{\varpi}(bt+c)f(t+a)$ defines a continuous linear representation of $\mathcal{H}(3, \mathcal{D})$ in the Banach space $\mathcal{C}(\mathcal{D}, K)$.

Proof

(1) Indeed, it is readily seen that for any $s \in \mathcal{H}(3, \mathcal{D})$, one has that π_s^{ϖ} is a continuous linear endomorphism of $\mathcal{C}(\mathcal{D}, K)$ and each π_s^{ϖ} is an isometry.

For $s(a, b, c), s(a', b', c') \in \mathcal{H}(3, \mathcal{D} \text{ and } f \text{ a continuous functions of } \mathcal{D} \text{ in } K$, It is a routine to verify that $\pi_{s(a,b,c)s(a',b',c')}^{\omega}f(t) = \pi_{s(a+a',b+b',c+c'+ab')}^{\omega}f(t) = pi_{s(a,b,c)}^{\omega} \circ \pi_{s(a',b',c')}^{\omega}f(t)$. (2) Furthermore, $|\pi_{s(a,b,c)}^{\omega}f(t) - \pi_{s(a',b',c')}^{\omega}f(t)| \leq 1$

(2) Furthermore, $|\pi_{s(a,b,c)}^{\omega}f(t) - \pi_{s(a',b',c')}^{\omega}f(t)| \le \le \max(|\exp_{\varpi}(bt+c) - \exp_{\varpi}(b't+c')||f(t+a)|, |\exp_{\varpi}(b't+c')||f(t+a) - f(t+a')|) \le \max(|\varpi((b-b')t+(c-c'))||f||, |f(t+a) - f(t+a')|) \le$

 $\max(\max(|b - b'|, |c - c'|) ||f||, |f(t + a) - f(t + a')|).$

Since \mathcal{D} is a metric compact space, continuity of functions implies uniform continuity. Hence for $\varepsilon > 0$, there exists $\eta_{\varepsilon} > 0$ such that if $|\theta - \theta'| < \eta_{\varepsilon}$ then $|f(\theta) - f(\theta')| < \varepsilon$. It follows that for $|a - a'| = |a + t - (t + a')| < \eta_{\varepsilon}$, one has $|f(t + a) - f(t + a')| < \varepsilon, \forall t \in \mathcal{D}$. According to the above inequality, if $||s(a, b, c) - s(a', b', c')|| \le \min(\varepsilon/||f||, \eta_{\varepsilon})$, one sees that

 $|\pi_{s(a,b,c)}f(t) - \pi_{s(a',b',c')}f(t)| < \varepsilon, \forall t \in \mathcal{D}$, which implies that $||\pi_{s(a,b,c)}f - \pi_{s(a',b',c')}f|| < \varepsilon$. It follows that the representation π is continuous. \Box

The tangent operators

(a) $\varpi \neq 0$ By definition, one has $\pi_{s(a,0,0)}f(t) = f(t+a) = \tau_a f(t)$ $\pi_{s(0,b,0)}f(t) = \exp_{\varpi}(bt)f(t)$ and $\pi_{s(0,0,c)}f(t) = \exp_{\varpi}(c)f(t)$. (b)

Let us consider the quotients : f(t + a) = f(t)

(i)
$$\Delta_a f(t) = \frac{f(t+a) - f(t)}{a}, \ a \neq 0$$

(ii) $M_b f(t) = \frac{exp_{\varpi}(bt)f(t) - f(t)}{b} = \frac{exp_{\varpi}(bt) - 1}{b}f(t), \ b \neq 0$ and
(iii) $\eta_c f(t) = \frac{exp_{\varpi}(c)f(t) - f(t)}{c} = \frac{exp_{\varpi}(-c) - 1}{c}f(t), \ c \neq 0.$

(i)' If a tends towards 0, since there exist continuous functions on \mathcal{D} that are not derivable, the limit $\lim_{a \to 0} \frac{f(t+a) - f(t)}{a}$ does not always exists. However this limit exists for (strictly) differentiable functions and defines an unbounded linear operator of $\mathcal{C}(\mathcal{D}, K)$ whose domain contains the space of strictly differentiable functions of \mathcal{D} in K.

But, on the other hand the following limits exist and are uniform limits

$$\begin{array}{ll} (ii)' & \lim_{b \to 0} M_b f(t) = \lim_{b \to 0} \frac{\exp_{\varpi}(ot) - 1}{b} f(t) = \varpi t f(t) \\ (iii)' & \lim_{c \to 0} \frac{\exp_{\varpi}(c) f(t) - f(t)}{c} = \lim_{c \to 0} \frac{\exp_{\varpi}(c) - 1}{c} f(t) = \varpi f(t) \end{array}$$

We are ready for the statement of the following ultrametric counterpart of classical Schrödinger representations.

THEOREM 2.2. Assume that \mathcal{D} is a compact unitary subring of the valuation subring of K. Consider ϖ a non zero element of E_p . Then the continuous linear representation $(\mathcal{H}(3,\mathcal{D}), \pi^{\varpi}, \mathcal{C}(\mathcal{D},K))$ is topologically irreducible

Let W be a closed invariant linear subspace of $\mathcal{C}(\mathcal{D}, K)$.

One sees that W is stable by the quotient maps M_b and by passing to limit it is stable by -(a)the $\varpi m(f)$ where m(f)(t) = tf(t). By linearity and density of the set of polynomial functions [by Stone-Weierstrass-Kaplansky theorem, see for instance [10], one obtains that for any continuous function g of \mathcal{D} in K and any $f \in W$, gf belongs to W. In other words W is an ideal of $\mathcal{C}(\mathcal{D}, K)$. -(b)-

Let $f \in W, f \neq 0$ and let us consider $0 < \varepsilon' < ||f||$, then there exist $t_{\varepsilon'} \in \mathcal{D}$ such that $0 < \varepsilon = ||f|| - \varepsilon' < |f(t_{\varepsilon'})|$. Therefore $O_{\varepsilon} = \{t \in \mathcal{D}/|f(t)| > \varepsilon\}$ is an open and closed non empty subset of \mathcal{D} . Let h_{ε} be the function such that $h_{\varepsilon}(t) = \frac{1}{f(t)}$ if $t \in O_{\varepsilon}$ and $h_{\varepsilon}(t) = 0$ otherwise. It is a continuous function such that $h_{\varepsilon}f = \chi_{O_{\varepsilon}}$, the characteristic function of O_{ε} [cf. [10], Proof of Theorem 6.27]. Since W is an ideal, $\chi_{O_{\varepsilon}} = h_{\varepsilon}f$ belongs to W. On the other hand $\pi_{s(-a,0,0)}\chi_{O_{\varepsilon}} = \tau_{-a}\chi_{O_{\varepsilon}} = \chi_{a+O_{\varepsilon}} \in W, \ \forall a \in \mathcal{D}. \text{ One sees that } \mathcal{D} = \bigcup (a+O_{\varepsilon}).$

Since \mathcal{D} is compact, one has a finite covering $\mathcal{D} = \bigcup (a_j + O_{\varepsilon})$. $1 \le j \le \nu$

Applying the inclusion-exclusion formula for characteristic functions one sees that $1 = \chi_{\mathcal{D}} = \chi_{\cup_{1 \leq 1 \leq \nu}(a_i+O_{\varepsilon})} = \sum_{j=1}^{\nu} \chi_{a_j+O_{\varepsilon}} + \sum_{k=2}^{\nu} (-1)^{k-1} \sum_{\substack{1 \leq j_1 < j_2 < \cdots < j_k \leq \nu \\ 0 < \nu < 1 > 0}} \chi_{a_{j_1}+O_{\varepsilon}} \cdots \chi_{a_{j_k}+O_{\varepsilon}}$ belongs to the ideal W, as any $\chi_{a_i+O_{\varepsilon}}$ does. Therefore $W = \mathcal{C}(\mathcal{D}, \mathcal{D})$

We have finished proving that the representation π^{ϖ} is topologically irreducible.

We have putted π^{ϖ} the linear representation associated to $\varpi \in E_p \setminus \{0\}$ such that $\pi^{\varpi}_{s(a,b,c)}f(t) = \exp_{\varpi}(bt+c)f(t+a).$

Corollary 2.3.

(i) Let $\varpi_1, \ \varpi_2 \in E_p \setminus \{0\}$. Then the representations π^{ϖ_1} and π^{ϖ_2} are equivalent if and only if $\varpi_1 = \varpi_2$

(*ii*) Let $c \in \mathcal{D}$, then $\exp(c\omega) \cdot id$ is an intertwining operator of the representation π^{ϖ} . If φ is an intertwining operator of the representation π^{ϖ} , then $\varphi = \varphi(1)id$, with $\varphi(1)$ a constant in K. (Schur Lemma)

Proof

(i) is easy

(*ii*) Let φ be an intertwining operator of the representation π^{ϖ} , that is $\pi^{\varpi}_{s} \circ \varphi = \varphi \circ \pi^{\varpi}_{s}$, $\forall s \in$ $\mathcal{H}(3,\mathcal{D})$. In particular $\pi^{\varpi}_{s(0,b,0)} \circ \varphi(f) = \exp_{\varpi b} \varphi(f) = \varphi(\exp_{\varpi_2 b} f)$. Hence for $b \neq 0$, one has $M_b\varphi(f) = \varphi(M_bf)$. When b tends towards 0, one has $M_b(t) \to \varpi t$. Hence $\varpi t\varphi(f) = \varphi(\varpi tf) \Longrightarrow$ $t\varphi(f) = \varphi(tf).$

From what one deduces that $\varphi(gf) = g\varphi(f) \Longrightarrow \varphi(g) = \varphi(1)g$. That is $\varphi = \varphi(1)id$.

Moreover since $\tau_a \circ \varphi = \varphi \circ \tau_a \Longrightarrow \tau_a \varphi(f) = \varphi(\tau_a f) = \varphi(1)\tau_a f$, one has $\tau_a \varphi(1) = \varphi(1)\tau_a 1 = \varphi(1)$. That is $\varphi(1)(x+a) = \varphi(1)(x), \forall a, x \in \mathcal{D}$. Hence $\varphi(1)(a) = \varphi(1)(0), \forall a \in \mathcal{D}$. That is $\varphi(1)$ is a constant function, element of the field K

Scholie

(α) The space $\mathcal{C}^1(\mathcal{D}, K)$ of strictly differentiable functions of \mathcal{D} in K is a subspace of $\mathcal{C}(\mathcal{D}, K)$ invariant by any representation π^{ϖ} . Which with its own topology is topologically irreducible although it is a dense subspace of the space of continuous functions. Any strictly differentiable function f has a derivative f' that is a continuous function not necessary strictly differentiable. Then the operator of derivation is an unbounded operator that domain contains $\mathcal{C}^1(\mathcal{D}, K)$ with values in $\mathcal{C}(\mathcal{D}, K)$.

(β) The space $\mathcal{A}(\mathcal{D}, K)$ of analytic functions of \mathcal{D} in K is another subspace of $\mathcal{C}(\mathcal{D}, K)$ that is a non-closed subspace invariant by π^{ϖ} . We will be concerned with such representation in the sequel.

 (γ) • The case when $\mathcal{D} = \mathbb{Z}_p$ can be of particular interest. Indeed we have described all the continuous characters κ of \mathbb{Z}_p in K^* . To any character $\kappa \in \widehat{\mathbb{Z}_p}$ one can associate a continuous linear representation π^{κ} of $\mathcal{H}(3, \mathbb{Z}_p)$ in the space $\mathcal{C}(\mathbb{Z}_p, K)$ by setting for any continuous function and any $s = s(a, b, c) \in \mathcal{H}(3, \mathbb{Z}_p) : \pi_s^{\kappa} f(t) = \kappa(bt+c)f(t+a)$. Unless $\kappa(1)$ is a p^{ν} -root of unity in K, what is said for the above representation associated to an analytic character remains mutatis mutandis true.

• If $\kappa(1)$ is a p^{ν} -root of unity, then the subspace of locally constant functions $\mathcal{C}(\mathbb{Z}_p, K)^{p^{\nu}\mathbb{Z}_p} = \{f : \mathbb{Z}_p \longrightarrow K \mid f(t+t') = f(t), \forall t' \in p^{\nu}\mathbb{Z}_p\}$ is invariant by π^{κ} . On can show that the restriction of π^{κ} to this subspace is a finite dimensional irreducible linear representation.

(δ) The one parameter subgroups associated to the representation π^{ϖ} .

The representation π^{ϖ} is not smooth. However one has the following one parameter subgroups associated to π^{ϖ} . That is group homomorphisms of \mathcal{D} in the group $Aut(\mathcal{C}(\mathcal{D}, K))$ of the linear automorphisms of the Banach space $\mathcal{C}(\mathcal{D}, K)$.

 (δ_1) The first is defined by the map $a \longrightarrow \tau_a$, which is not a smooth one parameter group.

 (δ_2) The second is the map $b \longrightarrow \pi^{\varpi}_{s(0,b,0)}$. This one parameter group is smooth and if one considers the linear operator m defined by setting m(f)(t) = tf(t), one has for any element $b \in \mathcal{D}$ the linear automorphism $\exp_{\varpi b}(m) = \exp_{\varpi}(bm) = \sum_{n\geq 0} \frac{\varpi^n b^n}{n!} m^n$ of $\mathcal{C}(\mathcal{D}, K)$ and one has $\exp_{\varpi}(bm)f =$

 $= \exp_{\varpi b} \cdot f$ for any continuous function f of \mathcal{D} in K

 (δ_3) The third is given by the smooth character $\exp_{\varpi} : c \longrightarrow \pi^{\varpi}_{s(0,0,c)}$. \Box

Notice that one has $\tau_a \circ m - m \circ \tau_a = a \tau_a, \forall a \in \mathcal{D}.$

3. Analytic representations

In this section we consider a non necessary compact, closed unitary subring \mathfrak{D} of the valuation ring $\Lambda_K = \Lambda$ of the complete valued field K extension of the field of p-adic numbers \mathbb{Q}_p . We have noticed that considering the space of analytic functions $\mathcal{A}(\mathfrak{D}, K)$, if \exp_{ϖ} is an analytic character of \mathbb{Z}_p , then one can defines a linear representation $U = U^{\varpi}$ of the Heisenberg group $\mathcal{H}(3, \mathfrak{D})$ in $\mathcal{A}(\mathfrak{D}, K)$ such that if s = s(a, b, c) is an element of $\mathcal{H}(3, \mathfrak{D})$ and f an analytic function \mathfrak{D} in K, then one has $U_{s(a,b,c)}f(t) = \exp_{\varpi}(bt+c)f(t+a)$. The space $\mathcal{A}(\mathfrak{D}, K)$ is complete with respect to the Gauss norm, but if the field K is of discrete valuation the Gauss norm differs from the uniform norm, we consider $\mathcal{A}(\mathfrak{D}, K)$ rather as the Tate algebra in one indeterminate, that is the subalgebra K < z > of the algebra of formal power series whose elements are the formal power series $f(z) = \sum_{n\geq 0} a_n z^n$ such that $\lim_{n\to+\infty} |a_n| = 0$. With the Gauss norm $||f|| = \sup_{n\geq 0} |a_n|$, the algebra K < z > becomes an ultrametric unitary algebra with a multiplicative norm. The elements of K < z > are also called the restricted power series with coefficients in K.

3.1. Substitution in restricted power series.

Let K[[X]] be the ring of formal power series with coefficients in K. For $f = \sum_{n \ge 0} a_n X^n \in K[[X]]$, one has in K[[X,Y]] = K[[X]][[Y]] the formal Taylor expansion $f(X+Y) = \sum_{n \ge 0} a_n (X+Y)^n = \sum_{j \ge 0} f^{[j]}(X)Y^j$: where $f^{[j]}(X) = \sum_{i \ge 0} {i+j \choose i} a_{i+j}X^i$. One has $f^{[1]}(X) = \sum_{i \ge 0} (i+1)a_{i+1}X^i = f'(X)$ the formal de-

rivative of f and if the field K is of characteristic 0, one sees that $f^{[j]}(X) = \frac{f^{(j)}(X)}{j!}$, where $f^{(j)}$ is the j^{th} -derivative of f.

Now let $f = \sum_{n \ge 0} a_n z^n \in K < z >$. For any integer j, one sees that $f^{[j]}(z) = \sum_{i \ge 0} {i+j \choose i} a_{i+j} z^i$ belongs to K < z >, with $||f^{[j]}|| = \sup_{i \ge 0} \left| {i+j \choose i} \right| |a_{i+j}| \le \sup_{i \ge 0} |a_{i+j}|$. Since $\lim_{j \to +\infty} |a_j| = 0$, one has $\lim_{j \to +\infty} \sup_{i \ge 0} |a_{i+j}| = \limsup_{j \to +\infty} |a_j| = 0$ which implies $\lim_{j \to +\infty} ||f^{[j]}|| = 0$. Let $h(z) = \sum_{n \ge 0} b_n z^n = b_0 + g(z) \in K < z >$ be such that $||h|| = \sup_{n \ge 0} |b_n| = \max_{n \ge 0} |b_n| = \max_{n \ge 0} |b_0|, ||g||) \le 1$. For the integers $i, j \ge 0$, one has $\left|\binom{i+j}{i}\right| |a_{i+j}| ||g^i|| \le |a_{i+j}| ||g||^i \le |a_{i+j}|.$ Hence $\lim_{i \to +\infty} \left|\binom{i+j}{i}\right| |a_{i+j}| ||g^i|| = 0, \forall j \ge 0$ fixed, and one has the convergent sum of restricted power series $\sum_{i\ge 0} \binom{i+j}{i} a_{i+j}g(z)^i, \forall j\ge 0$, that is for any integer $j\ge 0$ the power series $\sum_{i\ge 0} \binom{i+j}{i} a_{i+j}g(z)^i$ belongs to K < z > .

Since g(0) = 0, one has by substitution of formal power series that $f^{[j]} \circ g(z) = \sum_{i \ge 0} {\binom{i+j}{i}} a_{i+j}g(z)^i$ belongs to K < z >.

Moreover $||f^{[j]} \circ g|| \leq \sup_{i\geq 0} \left| \binom{i+j}{i} \right| |a_{i+j}| ||g^i|| \leq \sup_{i\geq 0} \left| \binom{i+j}{i} \right| |a_{i+j}| = ||f^{[j]}||, \forall j \geq 0.$ On the other hand, since $|b_0| \leq 1$, one has $|b_0|^j ||f^{[j]} \circ g|| \leq ||f^{[j]}||$. One then deduces that $\lim_{j\geq 0} |b_0|^j ||f^{[j]} \circ g|| = 0$ and one obtains the convergent sum of restricted power series

$$\sum_{j \ge 0} b_0^j f^{[j]} \circ g(z) = f(b_0 + g(z)) = f(h(z)), \text{ an element of } K < z >.$$

In particular for α and β elements of the valuation ring of K; one has an element of K < z > defined by setting $f(\alpha z + \beta) = \sum_{j \ge 0} \beta^j f^{[j]}(\alpha z)$.

3.2. Linear representations of $\mathcal{H}(3, \mathfrak{D})$ in K < z >.

For $\alpha, \beta \in \mathfrak{D}$, we have seen that one can substitute $\alpha z + \beta$ in f obtaining again an element of K < z > such that

$$f(\alpha z + \beta) = \sum_{j \ge 0} \beta^j f^{[j]}(\alpha z) \text{ and } f^{[j]}(\alpha z) = \sum_{i \ge 0} \binom{i+j}{i} a_{i+j} \alpha^i z^i.$$

Let us remind that if $|\varpi| < |p|^{\frac{1}{p-1}}$, then the series $\exp_{\varpi}(z) = \sum_{n\geq 0} \frac{\varpi^n}{n!} z^n$, is a non constant restricted power series for $\varpi \neq 0$, that is a non constant element of the

Tate algebra K < z >. Moreover $\| \exp_{\varpi} \| = \sup_{n \ge 0} \frac{|\varpi|^n}{|n!|} = 1.$

Now, let s = s(a, b, c) be an element of $\mathcal{H}(3, \mathfrak{D})$, the Heisenberg group with entries in the closed unitary subring \mathfrak{D} of the valuation Λ of the complete valued field K extension of \mathbb{Q}_p .

For $f \in K < z >$, let us set $U_{s(a,b,c)}^{\varpi} f(z) = \exp_{\varpi}(bz+c)f(z+a)$. One obtains by the way an element $U_{s(a,b,c)}^{\varpi}f$ of K < z >. It is obvious that $U_{s(a,b,c)}^{\varpi}$ is a continuous linear endomorphism of K < z >. One verifies as already done above that $U_{s(a,b,c)s(a',b',c')}^{\varpi} = U_{s(a,b,c)}^{\varpi} \circ U_{s(a',b',c')}^{\varpi}$. Hence the map $U^{\varpi} : \mathcal{H}(3, \mathfrak{D}) \longrightarrow \mathcal{L}(K < z >)$ such that $U^{\varpi}_{s(a,b,c)} f(z) = \exp_{\varpi}(bz+c)f(z+a)$ is a linear representation.

Since $\exp_{\varpi}(bz+c) = \sum_{n\geq 0} \frac{\varpi^n}{n!} (bz+c)^n$, with $||(bz+c)^n|| = ||bz+c||^n = \max(|b|, |c|)^n \le 1$, one has $\frac{|\varpi|^n}{|n!|} ||(bz+c)^n|| \le \frac{|\varpi|^n}{|n!|} < |p|^{n(\nu-\frac{1}{p-1})} < 1, \forall n \ge 1$ and then $||\exp_{\varpi}(bz+c)|| = 1$.

On the other hand one has $U_{s(a,0,0)}^{\varpi}f(z) = f(z+a) = \tau_a f(z) = \sum_{j\geq 0} a^j f^{[j]}(z)$, then $\|U_{s(a,0,0)}^{\varpi}f\| \leq \sup_{j\geq 0} |a|^j \|f^{[j]}\| \leq \sup_{j\geq 0} \|f^{[j]}\| \leq \|f\|$. In the same way, one has

 $\|U_{s(-a,0,0)}^{\varpi}f\| \leq \|f\|. \text{ One then sees that } \|U_{s(a,0,0)}^{\varpi}f\| = \|f\|, \forall a \in \mathcal{D}.$ It follows that $\|U_{s(a,b,c)}^{\varpi}f\| = \|\exp_{\varpi}(bz+c)\|\|U_{s(a,0,0)}^{\varpi}f\| = \|f\|.$ The representation is then said to be unitary.

LEMMA 3.1. The linear representation $(\mathcal{H}(3, \mathfrak{D}), U^{\varpi}, K < z >)$ is continuous. **Proof**

For $a \in \mathfrak{D}$ and $f \in K < z >$, one has $\tau_a f = \sum_{j \ge 0} a^j f^{[j]}$. One verifies that $\|\tau_a f - \tau_{a'} f\| \le \sup_{j \ge 1} |a^j - a'^j| \|f^{[j]}\| \le |a - a'| \sup_{j \ge 1} \|f^{[j]}\| \le |a - a'| \|f\|$. On the other hand $\|\exp_{\varpi}(bz+c) - \exp_{\varpi}(b'z+c')\| \le \sup_{n\ge 1} \left|\frac{\varpi^n}{n!}\right| \|(bz+c)^n - (b'z+c')^n\| \le \sup_{n\ge 1} \left|\frac{\varpi^n}{n!}\right| \cdot \max(|b-b'|, |c-c'|) \le \max(|b-b'|, |c-c'|)$ Let s(a, b, c) and s(a', b', c') be two elements of the Heisenberg group, one obtains $\|U^{\varpi}_{s(a,b,c)}f - U^{\varpi}_{s(a',b',c')}f\| \le \max(\|\exp_{\varpi}(bz+c) - \exp_{\varpi}(b'z+c) - \exp_{\varpi}(b'z+c')\|\||\tau_{a'}f\|) = \max(\|\tau_a f - \tau_{a'}f\|, \|\exp_{\varpi}(bz+c) - \exp_{\varpi}(b'z+c')\|\||\tau_{a'}f\|) = \max(\|\tau_a f - \tau_{a'}f\|, \|\exp_{\varpi}(bz+c) - \exp_{\varpi}(b'z+c')\|\|\|\tau_{a'}f\|) = \|s(a, b, c) - s(a', b', c')\|\|f\|$ and the map $s(a, b, c) \longrightarrow U^{\varpi}_{s(a,b,c)}f$ is continuous. \Box

The linear representation U^{ϖ} is smooth

By definition, one has $U_{s(a,0,0)}^{\varpi}f(z) = f(z+a) = \tau_a f(z)$ $U_{s(0,b,0)}^{\varpi}f(z) = \exp_{\varpi}(bz)f(z)$ and $U_{s(0,0,c)}^{\varpi}f(z) = \exp_{\varpi}(c)f(z)$. As previously, let us consider in K < z >, for $a \neq 0, b \neq 0$ and $c \neq 0$, the quotients :

(i)
$$\Delta_{a}(f) = \frac{\tau_{a}f - f}{a}$$

(ii)
$$M_{b}(f) = \frac{exp_{\varpi}(bz)f - f}{b} = \frac{exp_{\varpi}(bz) - 1}{b}f \text{ and}$$

(iii)
$$\eta_{c}(f) = \frac{exp_{\varpi}(c)f - f}{c} = \frac{exp_{\varpi}(c) - 1}{c}f.$$

Since
$$\tau_{a}f = \sum_{j\geq 0} a^{j}f^{[j]} = f + af' + \sum_{j\geq 2} a^{j}f^{[j]}, \text{ one immediately sees that}$$

$$\Delta_{a}(f) = f' + a\sum_{j\geq 0} a^{j-2}f^{[j]} \text{ and } \|\Delta_{a}(f) - f'\| \leq |a|\|f\| \Longrightarrow \sup \frac{\|\Delta_{a}(f) - f'\|}{c}$$

 $\Delta_a(f) = f' + a \sum_{j \ge 2} a^{j-2} f^{[j]} \text{ and } \|\Delta_a(f) - f'\| \le |a| \|f\| \Longrightarrow \sup_{f \ne 0} \frac{\|\Delta_a(f) - f\|}{\|f\|} \le |a|.$ It follows that in $\mathcal{L}(K < z >)$ one has:

 $\lim_{a \to 0} \Delta_a = \partial, \text{ where } \partial(f) = f'. \text{ Furthermore } \|\partial\| = 1. \quad (\mathbf{i})'$

In the same way, one obtains
$$M_b(f) = \frac{exp_{\varpi}(bz)f - f}{b} = \varpi z \cdot f + b \left(\sum_{n \ge 2} \frac{\varpi^n}{n!} b^{n-2} z^n\right) f$$
,
with $\|M_b(f) - \varpi z \cdot f\| < |b| \|f\|$, and $\lim_{b \to 0} \sup_{\|f\| \neq 0} \frac{\|M_b(f) - \varpi z \cdot f\|}{\|f\|} = 0$. That is, in
 $\mathcal{L}(K < z >)$, one has:

 $\lim_{b\to 0} M_b = \varpi m_z \text{ where } m_z(f) = zf \text{ and } ||m_z(f)|| = ||f|| \quad (\mathbf{ii})'.$ The formulas (i)' and (ii)' are used in the proof of the forthcoming theorem.

Obviously
$$\eta_c(f) = \frac{\exp_{\varpi}(c)f - f}{c} = \varpi f + c \left(\sum_{n \ge 2} \frac{\varpi^n}{n!} c^{n-2}\right) f.$$

Then $\|\eta_c(f) - \varpi f\| \le |c| \sup_{n \ge 2} \frac{|\varpi^n|}{|n!|} \|f\| < |c| \|f\|$ and one obtains $\lim_{c \to 0} \eta_c = \varpi \cdot id.$ (iii)'

THEOREM 3.2. Assume that $0 \neq \varpi \in E_p$. Then the continuous linear representation $(\mathcal{H}(3, \mathfrak{D}), U^{\varpi}, K < z >)$ is topologically irreducible.

Let W be a closed linear subspace of K < z > invariant by the representation U^{ϖ} .

(1) Let f be an element of W, for any $a \in \mathfrak{D}$, one has $\tau_a f = U_{s(a,0,0)} f \in W$. Hence $\Delta_a(f) = \frac{\tau_a f - f}{a}$ belongs to W.

Since W is a closed linear subspace, one sees that $\lim_{a\to 0} \Delta_a f = f' = \partial(f)$ also belongs to W.

Hence W is stable by the derivative operator ∂ and for any integer $n \geq 0$, one has $\partial^{\circ n}(W) \subset W$.

(2) In the same way, W is stable by M_b , $\forall b \in \mathfrak{D}$ and then it is stable by the limit $\lim_{b \to 0} M_b(f) = \varpi m_z(f)$, where $m_z(f) = zf$. Hence $z^n W \subset W, \forall n \geq 0$. Therefore by linearity and continuity, for any $g \in K < z >$ and for any $f \in W$, one has $gf \in W$. That is W is an ideal of K < z >.

(3) Assume that $W \neq 0$. Let $f \in W, f \neq 0$. According to Weierstrass preparation theorem (see for instance [5]) there exists a polynomial P and a restricted power series g such that f = Pg, with ||g - 1|| < 1, therefore g is invertible in K < z >. It follows that $P = g^{-1}f$ belongs to W.

Let ν be the degree of the polynomial P, then $\partial^{\circ\nu}P = \nu!a_{\nu} \in W$ and the formal power series 1 belongs to W. It follows that the nonzero ideal W is equal to K < z >. Therefore the linear representation U^{ϖ} is topologically irreducible. \Box

PROPOSITION 3.3.

The algebra $End_{U^{\varpi}}(K < z >)$ of the continuous linear intertwining operators of the representation U^{ϖ} is equal to K.id, where id is the identity map of K < z >. (Schur lemma)

Proof

Let φ be a continuous linear endomorphism of K < z > such that $\varphi \circ U_{s(a,b,c)}^{\varpi} = U_{s(a,b,c)}^{\varpi} \circ \varphi, \forall s(a,b,c) \in \mathcal{H}(3,\mathfrak{D}).$ One immediately sees, on one hand that $\varphi \circ \Delta_a = \Delta_a \circ \varphi, \forall a \in \mathfrak{D} \Longrightarrow \varphi \circ \partial = \partial \circ \varphi.$ On the other hand $\varphi \circ M_b = M_b \circ \varphi, \forall b \in \mathfrak{D} \Longrightarrow \varphi \circ m_z = m_z \circ \varphi.$ Hence for $f \in K < z >$, one has $\varphi(m_z(f)) = \varphi(zf) = m_z(\varphi(f)) = z\varphi(f)$ and $\varphi(z^n f) = z^n \varphi(f).$ As above by linearity and continuity, $\varphi(gf) = g\varphi(f), \forall g \in K < z >$. Setting $\varphi(1) = \sum_{n \geq 0} \alpha_{0,n} z^n$, one obtains $\varphi \circ \partial(1) = \varphi(0) = 0 = \partial \circ \varphi(1) =$

12

$$= \sum_{\geq 0} (n+1)\alpha_{0,n+1} z^n \Longrightarrow \alpha_{0,n+1} = 0, \forall n \geq 0, \text{ and } \varphi(1) = a_{0,0} \in K.$$

Hence $\varphi = a_{0,0} \cdot id.$

REMARK 3.4. The representations U^{ϖ_1} and U^{ϖ_2} are equivalent if and only if $\varpi_1 = \varpi_2$.

3.3. The completion of the Weyl algebra $A_1(K)$.

Remarks

-(i)- One has three one parameter groups attached to U^{ϖ} . Namely the group homomorphisms of \mathfrak{D} into $Aut_K(K < z >)$ defined by :

-(1)- $a \to \tau_a = \exp(a\partial)$ (strong convergence)

-(2)- $b \to \exp_{\varpi}(bm_z) = M_{\exp_{\varpi}(bz)}$, the operators of multiplication by the restricted formal power series $\exp_{\varpi}(bz)$.

-(3)- $c \to \lambda_{\exp_{\varpi}(c)}$, where $\lambda_{\exp_{\varpi}(c)}$ is the linear automorphism of K < z > of multiplication by the scalar $\exp_{\varpi}(c)$.

-(ii) – Heisenberg commutation relation:

 $\partial \circ m_z = m_z \circ \partial + id$

Let $\mathfrak{H} = K.\partial + K.m_z + K.id \subset \mathcal{L}(K < z >).$

If one puts for $u, v \in \mathcal{L}(K < z >)$ the bracket $[u, v] = u \circ v - v \circ u$ one obtains, as for any associative algebra a Lie algebra structure on $\mathcal{L}(K < z >)$.

Since $[\partial, m_z] = id$, it is readily seen that $\mathfrak{H} = K.\partial + K.m_z + K.id$ is a three dimensional Lie subalgebra of $\mathcal{L}(K < z >)$ isomorphic to the K-Heisenberg Lie algebra of dimension 3.

 $\begin{array}{ll} -(iii)-& \operatorname{Matrix} \text{ representation of }\partial \text{ and } m_z\\ \text{Let us set }\psi_n=z^n. \text{ Then }(\psi_n)_{n\geq 0} \text{ is an orthonormal basis of } K < z >.\\ \text{Let }\psi_n^{\star} \in \mathcal{L}(K < z >, K) \text{ be the dual basis element such that } <\psi_n^{\star}, \psi_m >= \delta_{n,m}\\ \text{One has }\partial(\psi_n)=n\psi_{n-1}=n <\psi_n^{\star}, \psi_n >\psi_{n-1}=n\psi_n^{\star}\otimes\psi_{n-1}(\psi_n).\\ \text{That is }\partial=\sum_{n\geq 0}n\psi_n^{\star}\otimes\psi_{n-1}=\sum_{n\geq 0}(n+1)\psi_{n+1}^{\star}\otimes\psi_n.\\ \text{Let us consider the canonical scalar product on } K < z > \text{ such that for } \\f=\sum_{n\geq 0}a_n\psi_n \text{ and } g=\sum_{n\geq 0}b_n\psi_n, \text{ one has } <f, g>=\sum_{n\geq 0}a_nb_n.\\ \text{Since }\partial=\sum_{\ell,j}\alpha_{\ell,j}\psi_j^{\star}\otimes\psi_\ell, \text{ with } \alpha_{\ell,j}=0 \text{ if } (\ell,j) \notin \{n+1,n\} \text{ and } \alpha_{n,n+1}=n+1,\\ \text{for }\ell \text{ fixed } \alpha_{\ell,j}=0 \text{ for } j\neq \ell+1; \text{ hence }\lim_{j\to +\infty}\alpha_{\ell,j}=0 \text{ and with respect to the scalar} \end{array}$

product <> the operator ∂ has an adjoint $\partial^{\star} = {}^{t}\partial \in \mathcal{L}(K < z >)$ [cf [1]] with ${}^{t}\partial = \sum_{\ell,j} \alpha_{j,\ell} \psi_{j}^{\star} \otimes \psi_{\ell} = \sum_{n \ge 0} (n+1) \psi_{n}^{\star} \otimes \psi_{n+1}.$ That is ${}^{t}\partial(\psi_{n}) = (n+1)\psi_{n+1}$

In the same way, one has $m_z(\psi_n) = \psi_{n+1} = \psi_n^*(\psi_n)\psi_{n+1} = \psi_n^*\otimes\psi_{n+1}(\psi_n)$. Hence $m_z = \sum_{n\geq 0} \psi_n^*\otimes\psi_{n+1}$. One sees that m_z has an adjoint $m_z^* = {}^tm_z = \sum_{n\geq 0} \psi_{n+1}^*\otimes\psi_n \in \mathcal{L}(K < z >)$,

that is ${}^tm_z(\psi_n) = \psi_{n-1}, n \ge 1$ and ${}^tm_z(\psi_0) = 0$

3.4. The Weyl algebra $A_1(K)$.

To go straight, we shall define, following the algebraic setting in [3], the Weyl algebra $A_1(K)$ to be the subalgebra of $\mathcal{L}(K < z >)$ generated by $\{m_z, \partial\}$.

In fact it is the algebra of differential operators of the algebra of polynomials K[z]. On the other hand, the abstract Weyl algebra is the quotient of the free algebra in two variables $K\{x, y\}$ by the two-sided ideal \mathcal{I} generated by yx - xy - 1. And if Kis of characteristic 0, then sending x on m_z and y on ∂ one obtains an isomorphism of $K\{x, y\}/\mathcal{I}$ onto $A_1(K)$.

Any $u \in A_1(K)$ can be written in the unique form $u = \sum_{i,j} \alpha_{i,j} m_z^i \partial^j$ (see for instance

loc. cit.). In the sequel, we identify
$$z^i$$
 with the operator m_z^i and then write also $u = \sum_{i,j} \alpha_{i,j} z^i \partial^j$.

Let us set $\delta^{[j]} = \frac{\partial^j}{j!}$. One verifies that $\delta^{[i]}\delta^{[j]} = \binom{i+j}{i}\delta^{[i+j]}$. One says that $(\delta^{[j]})_{i\geq 0}$ is an exponential sequence. For the integers $j \geq 0$ and $n \geq 0$, one has $\partial^j(z^n) = j!\binom{n}{j}z^{n-j}$ and $\delta^{[j]}(z^n) = \binom{n}{j}z^{n-j}$. Hence $\|\delta^{[j]}(z^n)\| = \left|\binom{n}{j}\right|$. One sees that $\|\delta^{[j]}\| = \sup_{n\geq j} \left|\binom{n}{j}\right| = 1$ and $\|\partial^j\| = |j!|$.

The following statements are counterparts of results obtained some years ago by the first author and Fana Tangara ([2]).

LEMMA 3.5. The family $(m_z^i \delta^{[j]})_{(i,j) \in \mathbb{N} \times \mathbb{N}}$ is an orthonormal family of $A_1(K)$ for the norm of bounded linear operators.

-(a)-Let $f \in K < z >$, for $i \ge 0, j \ge 0$, one has $m_z^i \circ \delta^{[j]}(f) = z^i f^{[j]}$, then $\|m_z^i \circ \delta^{[j]}(f)\| = \|z^i \delta^{[j]}(f)\| = \|\delta^{[j]}(f)\| \le \|f\| \Longrightarrow \|m_z^i \circ \delta^{[j]}\| = \|\delta^{[j]}\| = 1.$ -(b)-Let $u = \sum_{i,j} \alpha_{i,j} m_z^i \partial^j = \sum_{i,j} \beta_{i,j} z^i \delta^{[j]} \in A_1(K)$ one has $\|u\| \le \max_{i,j} |\beta_{i,j}| \|m_z^i \delta^{[j]}\| = \max_{i,j} |\beta_{i,j}|.$ On the other hand $u(z^0) = u(1) = \sum_{i\ge 0} \beta_{i,0} z^i$, then $\|u(z^0)\| = \sup_{i\ge 0} |\beta_{i,0}| \le \|u\|$. By induction, one proves that $\max_{i\ge 0} |\beta_{i,\ell}| \le \|u\|, \forall \ell \ge 0$. One concludes that $\|u\| = \max_{i,\ell} |\beta_{i,\ell}|.$ That means that $(m_z^i \delta^{[j]})_{i,j}$ is an orthonormal family of $A_1(K)$.

PROPOSITION 3.6.

Let $A_1(K)$ be the closure of the Weyl algebra $A_1(K)$ in the Banach algebra $\mathcal{L}(K < z >)$.

Then any element $u \in \widetilde{A}_1(K)$ can be written in the form of a unique summable family $u = \sum_{i,j} \beta_{i,j} m_z^i \delta^{[j]}$.

Moreover, one has $||u|| = \sup_{i,j} |\beta_{i,j}|$, that is $(m_z^i \delta^{[j]})_{i,j}$ is an orthonormal basis of $\widetilde{A}_1(K)$.

Proof

This is an easy consequence of the fact that the linear basis $(m_z^i \delta^{[j]})_{(i,j) \in \mathbb{N} \times \mathbb{N}}$ of $A_1(K)$ is an orthonormal family in the Banach space $\mathcal{L}(K < z >)$. \Box

PROPOSITION 3.7. For $u \in \widetilde{A}_1(K)$ and $f \in K < z > let us set u.f = u(f)$. Then $K < z > is a left Banach module over \widetilde{A}_1(K)$ and is topologically irreducible.

Proof

It runs as the proof of Theorem 3.2.

Proposition 3.8.

Any element $u \in A_1(K)$ can be written in the unique form of convergent series $u = \sum_{j\geq 0} \frac{f_j}{j!} \partial^j = \sum_{j\geq 0} f_j \delta^{[j]}$, with $f_j \in K < z >$, $\lim_{j \to +\infty} ||f_j|| = 0$ and $||u|| = \sup_{j\geq 0} ||f_j||$

Applying Proposition 3.5 to any generalized differential operator $u \in \widetilde{A}_1(K)$, one has the summable sum $u = \sum_{i,j} \beta_{i,j} m_z^i \delta^{[j]}$. This means that $\lim_{i,j} |\beta_{i,j}| = 0$ along the Fréchet filter on $\mathbb{N} \times \mathbb{N}$. Or equivalently for any $j \ge 0$, $\lim_{i \to +\infty} |\beta_{i,j}| = 0$ and $\lim_{j \to +\infty} \sup_{i \ge 0} |\beta_{i,j}| = 0$. Hence one has $u = \sum_{j \ge 0} \sum_{i \ge 0} \beta_{i,j} m_z^i \circ \delta^{[j]} = \sum_{j \ge 0} m_{f_j} \circ \delta^{[j]} = \sum_{j \ge 0} f_j \delta^{[j]}$, where $f_j = \sum_{i \ge 0} \beta_{i,j} z^i \in K < z >$, with $||f_j|| = \sup_{i \ge 0} |\beta_{i,j}|$. And one concludes that $\sup_{j \ge 0} ||f_j|| = ||u||$. \Box From the relation $\delta^{[j]}g = \sum_{s+t=j} \delta^{[s]}(g)\delta^{[t]}$ and the expansion in Proposition 3.8, one gets a formula for the expansion of the product of two elements of $\widetilde{A}_1(K)$. With the above notations if $u = \sum_{j \ge 0} \frac{f_j}{j!}\partial^j$, one has $||u|| = \sup_{j \ge 0} ||f_j|| = ||f_{j_0}||$. If j_0 is the greatest integer such that $||u|| = ||f_{j_0}||$ then $||f_j|| = \sup_{i \ge 0} |\beta_{i,j}| < ||f_{j_0}||$. On the other hand let i_0 be the greatest integer $j \ge 0$ such that $||f_{j_0}|| = ||\beta_{i_0,j_0}|$, one has $||\beta_{i,j}| < \beta_{i_0,j_0}|, \forall i \ge, \forall j > j_0$ and $||u|| = |\beta_{i_0,j_0}|$. **Considering the element** $v = \sum_{i \le i_0, j \le j \le 0} \beta_{i,j} z^i \delta^{[j]}$ of $A_1(K)$, one has $||u - v|| = |\sup_{i \ge i_0, j \ge i_0} \beta_{i,j}| < ||u||$, hence ||u|| = ||v||. One says as for Tate

algebra that v is a distinguished differential operator of degree (i_0, j_0) . With this in hand, one has algorithm of division by distinguished differential operators. As a consequence, following [8] one has

Theorem 3.9.

The complete Weyl algebra $A_1(K)$ is a simple, left noetherian ring with center K

Proof

For a proof, one can proceed as in [8]

THANK YOU

References

- [1] B. Diarra, Bounded linear operators on ultrametric Hilbert spaces. Afr Diaspora J. Math. 8 (2009), no. 2, 173-181.
- [2] B. Diarra, F. Tangara, The p-adic quantum plane algebras and quatum Weyl algebra, p-Adic numbers, Ultrametric Analysis and Applications, 2009, Vol. 1, No. 2, 2009, 128-135.
- [3] S. C. Coutinho, A primer of algebraic D-modules, London Mathematical Society Student Texts, 33, 2003.
- [4] G.B. Folland, Harmonic analysis in phase space. Princeton University Press 1989.
- [5] F. Q. Gouvêa, p-Adic numbers, An Introduction, Universitext, Springer, Second Edition 1997.
- [6] J. Grassberger, G. Hrmann, A note on representations of the finite Heisenberg group and sums of greatest common divisors. *Discrete Mathematics and Theoretical Computer Science*, DMTCS, 2001, 4 (2), pp.91-100. hal-00958949
- [7] M. Misaghian, The Representations of The Heisenberg over a finite Field, Armenian Journal of Mathematics, Volume 3, Number 4, 2010, 162-173.
- [8] A. Pangalos, *p-ad!c Weyl algebras*, Inaugural-Dissertation, Universität Münster, 2007.
- [9] A. M. Robert, A course in p-adic analysis, GTM 198, Springer 2000.
- [10] A.C.M. van Rooij, Non-archimedean Functional Analysis, Marcel Dekker Inc, New-York (1978).
- [11] W.H. Schikhof, Ultrametric calculus, An introduction to p-adic analysis Cambridge University Press, 1984
- [12] J. Schulte Harmonic analysis on finite Heisenberg groups European Journal of Combinatorics 25 (2004) 327338